INTERNATIONAL PROGRAMME ON CHEMICAL SAFETY ENVIRONMENTAL HEALTH CRITERIA 179 Morpholine This report contains the collective views of an international group of experts and does not necessarily represent the decisions or the stated policy of the United Nations Environment Programme, the International Labour Organisation, or the World Health Organization. First draft prepared by Dr. J. Kielhorn and Dr. G. Rosner, Fraunhofer Institute of Toxicology and Aerosol Research, Hanover, Germany Published under the joint sponsorship of the United Nations Environment Programme, the International Labour Organisation, and the World Health Organization World Health Organization Geneva, 1996 The International Programme on Chemical Safety (IPCS) is a joint venture of the United Nations Environment Programme, the International Labour Organisation, and the World Health Organization. The main objective of the IPCS is to carry out and disseminate evaluations of the effects of chemicals on human health and the quality of the environment. Supporting activities include the development of epidemiological, experimental laboratory, and risk-assessment methods that could produce internationally comparable results, and the development of manpower in the field of toxicology. Other activities carried out by the IPCS include the development of know-how for coping with chemical accidents, coordination of laboratory testing and epidemiological studies, and promotion of research on the mechanisms of the biological action of chemicals. WHO Library Cataloguing in Publication Data Morpholine. (Environmental health criteria ; 179) 1.Morpholine 2.Solvents 3.Chemical industry 4.Environmental exposure I.Series ISBN 92 4 157179 9 (NLM Classification: TP 247.5) ISSN 0250-863X The World Health Organization welcomes requests for permission to reproduce or translate its publications, in part or in full. Applications and enquiries should be addressed to the Office of Publications, World Health Organization, Geneva, Switzerland, which will be glad to provide the latest information on any changes made to the text, plans for new editions, and reprints and translations already available. (c) World Health Organization 1996 Publications of the World Health Organization enjoy copyright protection in accordance with the provisions of Protocol 2 of the Universal Copyright Convention. All rights reserved. The designations employed and the presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part of the Secretariat of the World Health Organization concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. The mention of specific companies or of certain manufacturers' products does not imply that they are endorsed or recommended by the World Health Organization in preference to others of a similar nature that are not mentioned. Errors and omissions excepted, the names of proprietary products are distinguished by initial capital letters. CONTENTS ENVIRONMENTAL HEALTH CRITERIA FOR MORPHOLINE 1. SUMMARY AND EVALUATION, CONCLUSIONS AND RECOMMENDATIONS 1.1. Physical and chemical properties 1.2. Analytical methods 1.3. Sources of human and environmental exposure 1.4. Environmental transport, distribution and transformation 1.5. Environmental levels and human exposure 1.6. Kinetics and metabolism in laboratory animals and humans 1.7. Effects on laboratory mammals and in vitro test systems 1.8. Effects on humans 1.9. Effects on other organisms in the laboratory and field 1.10. Evaluation of human health risks and effects on the environment 1.10.1. Evaluation of effects on human health 1.10.2. Evaluation of effects on the environment 1.11. Conclusions and recommendations 1.11.1. Recommendations for protection of human health 1.11.2. Recommendations for protection of the environment 1.11.3. Recommendations for further research 2. IDENTITY, PHYSICAL AND CHEMICAL PROPERTIES, AND ANALYTICAL METHODS 2.1. Identity 2.1.1. Technical product 2.1.2. Impurities 2.2. Physical and chemical properties 2.2.1. Physical properties of morpholine 2.2.1.1 Storage of morpholine 2.2.2. Chemical properties of morpholine 2.3. Conversion factors for morpholine 2.4. Analytical methods 2.4.1. Determination of morpholine in air 2.4.2. Determination of morpholine in water 2.4.3. Determination of morpholine in soil and sediments 2.4.4. Determination in biological and other material 3. SOURCES OF HUMAN AND ENVIRONMENTAL EXPOSURE 3.1. Natural occurrence 3.2. Anthropogenic sources 3.2.1. Production levels and processes 3.2.1.1 World producers 3.2.1.2 Production figures 3.2.1.3 Production processes 3.2.1.4 Losses to the environment during normal production 3.2.1.5 Methods of transport 3.2.1.6 Accidental release 3.2.2. Uses 3.2.2.1 Rubber chemicals 3.2.2.2 Anticorrosion agent 3.2.2.3 Waxes and polishes 3.2.2.4 Optical brighteners 3.2.2.5 Catalysts 3.2.2.6 Pharmaceuticals 3.2.2.7 Bactericides, fungicides and herbicides 3.2.2.8 Food additive applications 3.2.2.9 Cosmetics 4. ENVIRONMENTAL TRANSPORT, DISTRIBUTION AND TRANSFORMATION 4.1. Transport and distribution between media 4.1.1. Volatilization 4.2. Transformation 4.2.1. Biodegradation 4.2.1.1 Batch biodegradation tests 4.2.1.2 Biodegradation in laboratory-scale wastewater treatment plants 4.2.2. Abiotic degradation 4.2.2.1 Hydrolytic degradation 4.2.2.2 Photochemical degradation 4.2.2.3 Degradation by physico-chemical processes 4.2.3. Bioaccumulation 4.3. Interaction with other physical, chemical or biological factors 4.4. Ultimate fate following use 4.4.1. Fate of morpholine in various products 4.4.2. Waste disposal 5. ENVIRONMENTAL LEVELS AND HUMAN EXPOSURE 5.1. Environmental levels 5.1.1. Ambient air 5.1.2. Water 5.1.2.1 River water 5.1.2.2 Wastewater 5.1.3. Sediment 5.1.4. Soil 5.1.5. Terrestrial and aquatic organisms 5.2. General population exposure 5.2.1. Indoor air 5.2.2. Drinking-water and food 5.2.3. Tobacco 5.2.4. Cosmetics and toiletry articles 5.2.5. Rubber articles 5.3. Occupational exposure during manufacture, formulation or use 5.3.1. Exposure to morpholine 5.3.2. Exposure to N-nitrosomorpholine 6. KINETICS AND METABOLISM IN LABORATORY ANIMALS AND HUMANS 6.1. Absorption 6.2. Distribution 6.3. Metabolic transformation 6.4. Elimination and excretion 6.4.1. Expired air 6.4.2. Urine 6.4.3. Faeces 6.5. Retention and turnover 7. EFFECTS ON LABORATORY MAMMALS AND IN VITRO TEST SYSTEMS 7.1. Single exposure 7.1.1. Oral 7.1.2. Inhalation 7.1.3. Dermal 7.1.4. Intraperitoneal 7.2. Short-term exposure 7.2.1. Oral 7.2.2. Inhalation 7.2.3. Dermal 7.3. Long-term exposure 7.3.1. Oral 7.3.2. Inhalation 7.3.3. Dermal 7.4. Skin and eye irritation; sensitization 7.4.1. Eye irritation 7.4.2. Skin irritation 7.4.3. Sensitization 7.5. Reproductive toxicity, embryotoxicity and teratogenicity 7.6. Mutagenicity and related end-points 7.6.1. Mutagenicity of morpholine 7.6.1.1 Bacteria 7.6.1.2 Yeast 7.6.1.3 Mammalian cells in vitro 7.6.1.4 In vivo studies in mammals 7.6.2. Mutagenicity of morpholine in the presence of nitrite and nitrate 7.6.3. Mutagenicity of N-Nitrosomorpholine 7.7. Carcinogenicity 7.7.1. Morpholine 7.7.1.1 Oral studies 7.7.1.2 Inhalation studies 7.7.2. Morpholine and nitrite 7.7.2.1 Oral studies 7.7.3. Carcinogenicity of N-nitrosomorpholine 7.8. Factors modifying toxicity; toxicity of metabolites 7.8.1. Factors modifying toxicity 7.8.2. Morpholine metabolites 7.9. Mechanisms of toxicity - mode of action 8. EFFECTS ON HUMANS 8.1. General population exposure 8.1.1. Controlled human studies 8.1.1.1 Organoleptic effects 8.1.2. Epidemiological studies 8.2. Occupational exposure 9. EFFECTS ON OTHER ORGANISMS IN THE LABORATORY AND FIELD 9.1. Laboratory experiments 9.1.1. Microorganisms 9.1.1.1 Microorganisms in water 9.1.1.2 Microorganisms in soil 9.1.1.3 Pathogenic microorganisms 9.1.2. Other aquatic organisms 9.1.2.1 Monocellular green algae 9.1.2.2 Invertebrates 9.1.2.3 Vertebrates 9.1.3. Terrestrial organisms 9.1.3.1 Plants 9.1.3.2 Animals 9.2. Field observations 10. PREVIOUS EVALUATIONS BY INTERNATIONAL BODIES REFERENCES RESUME ET EVALUATION, CONCLUSIONS ET RECOMMANDATIONS RESUMEN Y EVALUACION, CONCLUSIONES Y RECOMENDACIONES NOTE TO READERS OF THE CRITERIA MONOGRAPHS Every effort has been made to present information in the criteria monographs as accurately as possible without unduly delaying their publication. In the interest of all users of the Environmental Health Criteria monographs, readers are requested to communicate any errors that may have occurred to the Director of the International Programme on Chemical Safety, World Health Organization, Geneva, Switzerland, in order that they may be included in corrigenda. * * * A detailed data profile and a legal file can be obtained from the International Register of Potentially Toxic Chemicals, Case postale 356, 1219 Châtelaine, Geneva, Switzerland (Telephone No. 9799111). * * * This publication was made possible by grant number 5 U01 ES02617-15 from the National Institute of Environmental Health Sciences, National Institutes of Health, USA, and by financial support from the European Commission. Environmental Health Criteria PREAMBLE Objectives In 1973 the WHO Environmental Health Criteria Programme was initiated with the following objectives: (i) to assess information on the relationship between exposure to environmental pollutants and human health, and to provide guidelines for setting exposure limits; (ii) to identify new or potential pollutants; (iii) to identify gaps in knowledge concerning the health effects of pollutants; (iv) to promote the harmonization of toxicological and epidemiological methods in order to have internationally comparable results. The first Environmental Health Criteria (EHC) monograph, on mercury, was published in 1976 and since that time an ever-increasing number of assessments of chemicals and of physical effects have been produced. In addition, many EHC monographs have been devoted to evaluating toxicological methodology, e.g., for genetic, neurotoxic, teratogenic and nephrotoxic effects. Other publications have been concerned with epidemiological guidelines, evaluation of short-term tests for carcinogens, biomarkers, effects on the elderly and so forth. Since its inauguration the EHC Programme has widened its scope, and the importance of environmental effects, in addition to health effects, has been increasingly emphasized in the total evaluation of chemicals. The original impetus for the Programme came from World Health Assembly resolutions and the recommendations of the 1972 UN Conference on the Human Environment. Subsequently the work became an integral part of the International Programme on Chemical Safety (IPCS), a cooperative programme of UNEP, ILO and WHO. In this manner, with the strong support of the new 14 partners, the importance of occupational health and environmental effects was fully recognized. The EHC monographs have become widely established, used and recognized throughout the world. The recommendations of the 1992 UN Conference on Environment and Development and the subsequent establishment of the Intergovernmental Forum on Chemical Safety with the priorities for action in the six programme areas of Chapter 19, Agenda 21, all lend further weight to the need for EHC assessments of the risks of chemicals. Scope The criteria monographs are intended to provide critical reviews on the effect on human health and the environment of chemicals and of combinations of chemicals and physical and biological agents. As such, they include and review studies that are of direct relevance for the evaluation. However, they do not describe every study carried out. Worldwide data are used and are quoted from original studies, not from abstracts or reviews. Both published and unpublished reports are considered and it is incumbent on the authors to assess all the articles cited in the references. Preference is always given to published data. Unpublished data are only used when relevant published data are absent or when they are pivotal to the risk assessment. A detailed policy statement is available that describes the procedures used for unpublished proprietary data so that this information can be used in the evaluation without compromising its confidential nature (WHO (1990) Revised Guidelines for the Preparation of Environmental Health Criteria Monographs. PCS/90.69, Geneva, World Health Organization). In the evaluation of human health risks, sound human data, whenever available, are preferred to animal data. Animal and in vitro studies provide support and are used mainly to supply evidence missing from human studies. It is mandatory that research on human subjects is conducted in full accord with ethical principles, including the provisions of the Helsinki Declaration. The EHC monographs are intended to assist national and international authorities in making risk assessments and subsequent risk management decisions. They represent a thorough evaluation of risks and are not, in any sense, recommendations for regulation or standard setting. These latter are the exclusive purview of national and regional governments. Content The layout of EHC monographs for chemicals is outlined below. * Summary - a review of the salient facts and the risk evaluation of the chemical * Identity - physical and chemical properties, analytical methods * Sources of exposure * Environmental transport, distribution and transformation * Environmental levels and human exposure * Kinetics and metabolism in laboratory animals and humans * Effects on laboratory mammals and in vitro test systems * Effects on humans * Effects on other organisms in the laboratory and field * Evaluation of human health risks and effects on the environment * Conclusions and recommendations for protection of human health and the environment * Further research * Previous evaluations by international bodies, e.g., IARC, JECFA, JMPR Selection of chemicals Since the inception of the EHC Programme, the IPCS has organized meetings of scientists to establish lists of priority chemicals for subsequent evaluation. Such meetings have been held in: Ispra, Italy, 1980; Oxford, United Kingdom, 1984; Berlin, Germany, 1987; and North Carolina, USA, 1995. The selection of chemicals has been based on the following criteria: the existence of scientific evidence that the substance presents a hazard to human health and/or the environment; the possible use, persistence, accumulation or degradation of the substance shows that there may be significant human or environmental exposure; the size and nature of populations at risk (both human and other species) and risks for environment; international concern, i.e. the substance is of major interest to several countries; adequate data on the hazards are available. If an EHC monograph is proposed for a chemical not on the priority list, the IPCS Secretariat consults with the Cooperating Organizations and all the Participating Institutions before embarking on the preparation of the monograph. Procedures The order of procedures that result in the publication of an EHC monograph is shown in the flow chart. A designated staff member of IPCS, responsible for the scientific quality of the document, serves as Responsible Officer (RO). The IPCS Editor is responsible for layout and language. The first draft, prepared by consultants or, more usually, staff from an IPCS Participating Institution, is based initially on data provided from the International Register of Potentially Toxic Chemicals, and reference data bases such as Medline and Toxline. The draft document, when received by the RO, may require an initial review by a small panel of experts to determine its scientific quality and objectivity. Once the RO finds the document acceptable as a first draft, it is distributed, in its unedited form, to well over 150 EHC contact points throughout the world who are asked to comment on its completeness and accuracy and, where necessary, provide additional material. The contact points, usually designated by governments, may be Participating Institutions, IPCS Focal Points, or individual scientists known for their particular expertise. Generally some four months are allowed before the comments are considered by the RO and author(s). A second draft incorporating comments received and approved by the Director, IPCS, is then distributed to Task Group members, who carry out the peer review, at least six weeks before their meeting. The Task Group members serve as individual scientists, not as representatives of any organization, government or industry. Their function is to evaluate the accuracy, significance and relevance of the information in the document and to assess the health and environmental risks from exposure to the chemical. A summary and recommendations for further research and improved safety aspects are also required. The composition of the Task Group is dictated by the range of expertise required for the subject of the meeting and by the need for a balanced geographical distribution. The three cooperating organizations of the IPCS recognize the important role played by nongovernmental organizations. Representatives from relevant national and international associations may be invited to join the Task Group as observers. While observers may provide a valuable contribution to the process, they can only speak at the invitation of the Chairperson. Observers do not participate in the final evaluation of the chemical; this is the sole responsibility of the Task Group members. When the Task Group considers it to be appropriate, it may meet in camera. All individuals who as authors, consultants or advisers participate in the preparation of the EHC monograph must, in addition to serving in their personal capacity as scientists, inform the RO if at any time a conflict of interest, whether actual or potential, could be perceived in their work. They are required to sign a conflict of interest statement. Such a procedure ensures the transparency and probity of the process. When the Task Group has completed its review and the RO is satisfied as to the scientific correctness and completeness of the document, it then goes for language editing, reference checking, and preparation of camera-ready copy. After approval by the Director, IPCS, the monograph is submitted to the WHO Office of Publications for printing. At this time a copy of the final draft is sent to the Chairperson and Rapporteur of the Task Group to check for any errors. It is accepted that the following criteria should initiate the updating of an EHC monograph: new data are available that would substantially change the evaluation; there is public concern forhealth or environmental effects of the agent because of greater exposure; an appreciable time period has elapsed since the last evaluation. All Participating Institutions are informed, through the EHC progress report, of the authors and institutions proposed for the drafting of the documents. A comprehensive file of all comments received on drafts of each EHC monograph is maintained and is available on request. The Chairpersons of Task Groups are briefed before each meeting on their role and responsibility in ensuring that these rules are followed. WHO TASK GROUP ON ENVIRONMENTAL HEALTH CRITERIA FOR MORPHOLINE Members Dr J. Kielhorn, Fraunhofer Institute of Toxicology and Aerosol Research, Hanover, Germany (Joint Rapporteur) Dr J.S. Knapp, Department of Microbiology, University of Leeds, Leeds, United Kingdom (Joint Rapporteur) Dr I. Linhart, Centre of Industrial Hygiene and Occupational Diseases, National Institute of Public Health, Prague, Czech Republic Dr U. Schiecke, Federal Environmental Agency, Berlin, Germany Dr J.A. Sokal, Institute of Occupational Medicine and Environmental Health, Sosnowiec, Poland (Chairman) Representatives of other organizations Dr P. Montuschi, Department of Pharmacology, Catholic University of the Sacred Heart, Rome, Italy (representing the International Union of Toxicology (Vice-Chairman) Secretariat Mrs C. Partensky, International Agency for Research on Cancer, Lyon, France Dr E. Smith, International Programme on Chemical Safety, World Health Organization, Geneva, Switzerland (Secretary) ENVIRONMENTAL HEALTH CRITERIA FOR MORPHOLINE A WHO Task Group on Environmental Health Criteria for Morpholine met at the World Health Organization, Geneva, from 8 to 11 November 1994. Dr E.M. Smith, IPCS, welcomed the participants on behalf of Dr M. Mercier, Director of the IPCS, and on behalf of the heads of the three IPCS cooperating organizations (UNEP/ILO/WHO). The Task Group reviewed and revised the draft monograph and made an evaluation of the risks for human health and the environment from exposure to morpholine. The first draft of this monograph was prepared by Dr J. Kielhorn and Dr G. Rosner, Fraunhofer Institute of Toxicology and Aerosol Research, Hanover, Germany. The second revised draft was prepared by Dr J. Kielhorn. Dr E.M. Smith and Dr P.G. Jenkins, both members of the IPCS Central Unit, were responsible for the scientific content and technical editing, respectively. The efforts of all who helped in the preparation and finalization of the monograph are gratefully acknowledged. ABBREVIATIONS CHO Chinese hamster ovary DOC dissolved organic carbon FID flame ionization detector FPD flame photometric detector GC gas chromatography HPLC high-performance liquid chromatography IC ion chromatography MLSS mixed liquor suspended solids MS mass spectrometry NMOR N-nitrosomorpholine NO nitrogen oxide NOAEL no-observed-adverse-effect level NSD nitrogen selective detector OECD Organisation for Economic Co-operation and Development TEA thermal energy analyser 1. SUMMARY AND EVALUATION, CONCLUSIONS AND RECOMMENDATIONS 1.1 Physical and chemical properties Morpholine (1-oxa-4-azacyclohexane) is a colourless, oily, hygroscopic, volatile liquid with a characteristic amine ("fishy") odour. It is completely miscible with water, as well as with many organic solvents, but has limited solubility in alkaline aqueous solutions. It is a base, the pKa of the conjugated acid being 8.33. Correspondingly, the octanol-water partition coefficient is pH- dependent (log Pow -2.55 at pH 7 and -0.84 at pH 10; 35°C). The vapour pressure of aqueous solutions of morpholine is very close to that of water. Morpholine can undergo a variety of reactions. It behaves chemically as a secondary amine. Under environmental and physiological conditions, the proven animal carcinogen N-nitrosomorpholine (NMOR) is formed by reaction of solutions of nitrite or gaseous nitrogen oxides with dilute solutions of morpholine. Nitrogen oxide (NO) levels may be of importance in nitrosation. The conditions of nitrosation, in particular pH, play a significant role. 1.2 Analytical methods Morpholine can be determined by gas chromatography (GC) with packed as well as capillary columns, high-performance liquid chromatography (HPLC) and ion chromatography (IC). Detectors used include flame ionization detector (FID), flame photometric detector (FPD), nitrogen selective detector (NSD), and mass spectrometry (MS) and thermal energy analyser (TEA) for GC, and UV-detector and TEA for HPLC. For the determination of trace amounts, derivatization is required. The method of choice for sensitivity seems to be GC with TEA following the derivatization to NMOR (the detection limit is 2-3 µg/kg in various matrices). Low concentrations of morpholine in air can be determined by GC with NSD. 1.3 Sources of human and environmental exposure It is estimated that around 25 000 tonnes of morpholine per year are produced industrially world-wide, but details of production from some countries are lacking. The main production process used appears to be the reaction of diethylene glycol with ammonia in the presence of hydrogen and catalysts. Morpholine is an extremely versatile chemical but knowledge of its uses is incomplete. It is important as a chemical intermediate in the rubber industry, as a corrosion inhibitor, and in the synthesis of optical brighteners, crop protection agents, dyes and drugs. Morpholine is used as a solvent for a large variety of organic materials, including resins, dyes and waxes. It can be used as a catalyst. Morpholine is still used in some countries in toiletry and cosmetic products. It is used in some countries in several direct and indirect food additive applications. Human and environmental exposure arises from both gaseous and aqueous emissions and directly from some of its uses, including, for example, its use in cosmetic formulations and waxes. The main emissions probably result from its manufacture and its use in the chemical industry (notably in production and use of rubber chemicals) and as an anti-corrosion agent. Morpholine has been detected in a wide variety of foods and tobacco. It could be that this morpholine arises from the wax coatings on fruit or on packaging, but in some cases its origin is unknown. 1.4 Environmental transport, distribution and transformation Morpholine is chemically stable in the biosphere although it is subject to chemical and biological nitrosation to NMOR. Morpholine is inherently biodegradable. Under the conditions of model activated sludge plants, morpholine is biodegradable. However, under non-adapted conditions there is probably no significant degradation of morpholine. The mean solid retention time in activated sludge plants is of crucial importance and must be over 8 days if reliable morpholine degradation is to be achieved. There are inadequate data on the bioaccumulation of morpholine in aquatic and terrestrial organisms. From the n-octanol/water partition coefficient for morpholine (log Pow = -2.55 at pH7), no bioaccumulation would be expected. As morpholine is an important industrial chemical with a wide range of applications, the presence of the compound or its derivatives is to be expected in many industrial effluents. Its use as a corrosion inhibitor in boiler water means that it will be found in boiler wastewater, including that from power plants using morpholine. Its use in the manufacture of rubber additives results in an undefinable amount of morpholine being released into the hydrosphere or geosphere through tyre abrasion and disposal of used tyres. As a result of its use in waxes and polishes, morpholine is released into the environment through volatilization. It is quickly adsorbed by moisture. The main compartment for accumulation of morpholine is therefore the hydrosphere. The limited data suggest that morpholine does not accumulate in the hydrosphere. Incineration is the preferred method of disposal for undiluted morpholine, but nitrogen oxide emission controls may be required to meet environmental regulations. For aqueous effluents, activated sludge treatment is adequate, but only if the plant is carefully controlled (see above). 1.5 Environmental levels and human exposure There are no data available on levels of morpholine in ambient and residential indoor air and in drinking-water. There are limited data on its occurrence in natural waters and no information on its occurrence in soil. Based on the available data, the main source of general population exposure to morpholine is food, which can be contaminated with morpholine through direct treatment of fruit with waxes containing morpholine for conservation purposes, through steam treatment during food processing, and by the use of packaging material containing morpholine. However, quantitative data on food contamination by morpholine and NMOR are limited. For example, in prepacked milk products, values ranged from 5 to 77 µg/kg morpholine and up to 3.3 µg/kg NMOR. Morpholine content in various food samples (fish, meat, plant products, beverages) usually did not exceed 1 mg/kg. Higher levels (up to 71.1 mg/kg) were detected in citrus fruits in Japan. A survey in Italy did not identify NMOR in a variety of foods at a detection limit of 0.3 µg/kg. Existing data do not permit an estimation of the intake of morpholine and NMOR from food. Morpholine has been found in cigarette tobacco at a concentration of 0.3 mg/kg, and in snuff and chewing tobacco at concentrations up to 4.0 mg/kg. Levels of NMOR up to 0.7 mg/kg have been reported in the past in snuff. These were probably associated with the use of morpholine-containing waxes in packaging. NMOR has been detected in some toiletry and cosmetic products, e.g., shampoos and eye make-up, and in rubber articles, e.g. baby pacifiers and feeding bottle teats, at levels up to 3.5 mg/kg. Occupational exposure to morpholine may occur in several industries. There are few data on exposure of workers to morpholine. All reported values are below 3 mg/m3. Occupational exposure to NMOR has been found in the rubber industry, where concentrations up to 250 µg/m3 have been measured. The data currently available provide an indication of the potential for human exposure but do not allow a precise estimation of the levels of exposure of the general and occupational populations to morpholine and NMOR. 1.6 Kinetics and metabolism in laboratory animals and humans Morpholine is absorbed after oral, dermal and inhalation exposure. In the rat following oral and intravenous administration, morpholine is rapidly distributed, the highest concentrations being found in the intestine and muscle. In the rabbit, following intravenous and inhalation exposure, morpholine is preferentially distributed to the kidneys, lower concentrations reaching the lung, liver and blood. Morpholine does not bind significantly to plasma proteins. Plasma half-lives have been reported to be 115 (rat), 120 (hamster), and 300 min (guinea-pig). Morpholine is excreted mainly via the renal route, as the unchanged compound, in a variety of species. One day after administration, 70-90% of morpholine was found in urine. Neutralization of morpholine enhances the rate of excretion of the compound. A small percentage of morpholine is excreted in expired air and faeces. Studies in rats, mice, hamster and rabbit indicate that morpholine is eliminated almost completely as the unmetabolized compound. In the guinea-pig, N-methylation followed by Noxidation can occur, with up to 20% of the administered dose being metabolized. In the presence of nitrite, morpholine can be converted to NMOR both in vitro and in vivo. Depending on the dose, 0-12% of morpholine administered to rats with nitrites may be nitrosated. Immunostimulation, involving macrophage activation, may increase the extent of nitrosation. 1.7 Effects on laboratory mammals and in vitro test systems The acute toxicity of morpholine after oral administration shows LD50 values of 1-1.9 g/kg body weight and 0.9 g/kg body weight in the rat and guinea-pig, respectively. Rats receiving neutralized morpholine (1 g/kg body weight) survived. After intraperitoneal administration, the LD50 was 0.4 g/kg body weight in the mouse and between 0.1 and 0.4 g/kg body weight in the rat. After inhalation exposure, the LD50 was about 8 g/m3 in the rat and between 5 and 7 g/m3 in the mouse. The dermal LD50 was 0.5 ml/kg of undiluted morpholine in the rabbit. The acute toxicity of morpholine is characterized by gastrointestinal haemorrhage and diarrhoea after oral exposure, and irritation and haemorrhage of the nose, mouth, eyes and lung after inhalation. In a 30-day gavage study on rats at doses of 0.16 - 0.8 g/kg body weight, there were severe toxic effects and mortality at all dose levels. In the guinea-pig at doses of 0.09 - 0.45 g/kg body weight there was also severe toxicity and mortality at all dose levels. After short-term inhalation exposure to morpholine (7.2 g/m3, 4 h/day, 4 days and 1.63 g/m3, 4 h/day, 5 days/week, 30 days), alterations in lung function have been reported in rats. Mortality rate in the rat ranged from 0 to 100% depending on exposure level (0.36-18.1 g/m3, 6 h/day, 9 days). Inhalation toxicity was dose- related with various degrees of local irritation (eyes, mouth, nose, lung) and haemorrhage at the higher exposure levels. One study reported increased function of thyroid gland and another necrosis of liver and renal tubules after inhalation exposure. A 90-day study showed that morpholine administered orally (0.2-0.7 g/kg body weight per day) for 90 days may reduce body weight gain and renal function in the mouse. After 672 days of oral exposure to morpholine (0.28-0.5 g/kg body weight per day), forestomach epithelium hyperplasia was reported (mouse). In a 13-week inhalation study, morpholine (0.09-0.9 g/m3, 6 h/day, 5 days/week) has been reported to cause dose-related lesions of nasal mucosa and pneumonia at the higher exposure levels (0.36 and 0.9 mg/m3). No treatment-related changes to a number of parameters were observed at 0.09 g/m3; this concentration may be considered a no-observed-adverse-effect level (NOAEL) under the conditions of sub-chronic inhalation exposure. Morpholine in the undiluted and unneutralized form is highly irritant for the eye and skin, probably due to its alkaline properties. Dilution and neutralization of its pH may significantly reduce its topical toxicity. Morpholine (2%) did not induce sensitivity in the guinea-pig using the modified Buehler method. Morpholine did not induce mutations in bacteria or yeasts with and without metabolic activation (with one exception at a very high concentration). It was negative in the host-mediated assay. Morpholine did not induce DNA-repair in primary rat hepatocytes and did not induce a significant increase in sister chromatid exchange in Chinese hamster ovary cells. Morpholine was considered to be weakly mutagenic in the L5178Y mouse lymphoma assay. It increased type III foci in the BALB/3T3 malignant cell transformation assay, although neutralized morpholine did not. Morpholine caused neither point mutation nor chromosomal aberration in hamster embryos exposed in utero. No increase in the incidence of tumours was seen in rats given up to 0.5 g/m3 morpholine by inhalation for 104 weeks nor in mice given 1% morpholine oleate in their drinking-water for 96 weeks. In a long- term study on a group of 104 rats given 1000 mg morpholine/kg diet, there were three liver cell carcinoma, two lung and another angiosarcoma (unspecified) and two malignant glioma, whereas in a control group of 156 rats there were no tumours. With hamsters under the same conditions, no tumours were found. Morpholine given simultaneously with nitrite yields positive results in the host-mediated assay, probably due to the formation of NMOR. Morpholine fed simultaneously with nitrite induced liver and lung tumours in rats and liver tumours in hamsters probably due to the endogenous formation of NMOR. NMOR is mutagenic in bacteria and yeasts; weakly positive results were reported for sister chromatid exchange in CHO cells and for mutations in mouse lymphoma L5178Y cells. NMOR is carcinogenic in mice, rats, hamsters and various fishes, producing liver and lung tumours in mice, liver, kidney and blood vessel tumours in rats, liver, upper digestive and respiratory tract tumours in hamsters, and liver tumours in fish. 1.8 Effects on humans There have been no reports on incidents of acute poisoning or on the effects of short- or long-term exposure to morpholine by the general population. The phenomenon known as blue vision or glaucopsia, as well as some instances of skin and respiratory tract irritation, have been described in reports of occupational exposure to morpholine; however, no atmospheric concentrations of morpholine were given. It was reported that the number of chromosomal aberrations in the lymphocytes of peripheral blood of workers exposed for 3-10 years to morpholine at concentrations of 0.54-0.93 mg/m3 did not differ significantly from controls. Undiluted morpholine is strongly irritant to skin; a dilute solution (1 to 40) was mildly irritant. The potential carcinogenicity of morpholine in exposed human populations has not been investigated. 1.9 Effects on other organisms in the laboratory and field Among the aquatic organisms tested, certain cyanobacteria (Microcystis) and unicellular green algae (Scenedesmus) appear to be the most sensitive taxa as toxicity threshold values (criterion: inhibition of population growth) of 1.7 mg/litre for Microcystis and 4.1 mg/litre for Scenedesmus have been reported (duration of exposure: 8 days). Aerobic bacteria like Pseudomonas proved to be much more resistant: the 16-h toxicity threshold and the NOEC for population growth have been cited as 310 and 8700 mg/litre, respectively. However, 1000 mg/litre inhibited respiration and dehydrogenase activity (up to 20%) in activated sludge from industrial treatment plants. Among aquatic protozoans tested so far, representatives of the genera Entosiphon and Chilomonas (with threshold values of 12 and 18 mg/litre, respectively, for the inhibition of population growth) turned out to be the most sensitive. The 24-h EC values (E=immobilisation) for Daphnia were in the range of 100-120 mg/litre. The 48- to 96-h LC50 values reported for fish tested in fresh, brackish or seawater were > 180 mg/litre, rainbow trout being the most sensitive species. No data on long-term effects in aquatic invertebrates and vertebrates are available. Information about the toxicity of morpholine in free-living soil organisms is almost entirely lacking, being restricted to a 3-day EC value of about 400 mg/litre given for germination inhibition in lettuce. 1.10 Evaluation of human health risks and effects on the environment 1.10.1 Evaluation of effects on human health The general population is primarily exposed to morpholine by consumption of contaminated food. Contamination of tobacco and tobacco products, and cosmetic and toiletry articles and rubber products may also contribute to overall exposure. Occupational exposure to morpholine occurs in many industries; the compound is absorbed by inhalation and skin absorption. Data are inadequate to determine the degree of exposure of the general population. Data on occupational exposure to morpholine are also limited. Morpholine is not highly toxic under conditions of acute exposure. The LD50 after oral administration is 1-1.9 g/kg body weight in rats and 0.9 g/kg body weight in guinea-pigs. LC50 values of 7.8 mg/m3 (rats) and 4.9-6.9 g/m3 (mice) have been reported. In the conditions of short-term and long-term inhalation exposure, the critical effects appear to be irritation of the eyes and respiratory tract. A concentration of 90 mg/m3 may be considered the NOAEL in the conditions of the 13-week experiment in rats (6 h/day, 5 days/week). In a long-term inhalation study (104 weeks), increased incidences of inflammation of the cornea, and inflammation and necrosis of the nasal cavity were observed in rats at 540 mg/m3. Increased incidence of irritation of eyes and nose was also observed at 36 and 180 mg/m3. High exposures to morpholine causes severe damage to the liver and kidneys of rats and guinea-pigs. Fatty degeneration of the liver was reported in rats after feeding morpholine (0.5 g/kg body weight) daily for 56 days. When administered morpholine oleic acid salt in the drinking-water at a dose of about 0.7 g/kg body weight per day for 13 weeks, mice showed cloudy swelling of the kidney proximal tubules. Decreased body weight gain was observed in female mice in the long- term (672 days) feeding experiment at dose levels between 0.05 and 0.4 g morpholine (as oleic acid salt). At the reported levels of the present occupational and environmental exposures, morpholine does not seem to create any significant risk of systemic toxic effects. Local effects (irritation) of the eyes and respiratory tract may occur in non-controlled occupational and incidental exposures to high concentrations of airborne morpholine, and skin irritation may result from contact with liquid (even diluted) morpholine. Morpholine does not appear to be mutagenic or carcinogenic in animals. However, it can be easily nitrosated to form NMOR, which is mutagenic and carcinogenic in several species of experimental animals. Morpholine fed to rats sequentially with nitrite caused an increase in tumours, mostly hepatocellular carcinoma and sarcomas of the liver and lungs. It is therefore prudent to consider exposure to morpholine as increasing the carcinogenic risk in exposed populations. 1.10.2 Evaluation of effects on the environment In view of the very restricted knowledge regarding environmental exposure, the lack of effect data relating to long-term exposure in water and to short- and long-term exposure in the terrestrial environment, a sound risk assessment cannot be carried out at present. On the basis of the reported properties of morpholine, the available ecotoxicological information and the few data on environmental concentrations, certain conclusions can be drawn. The high water solubility of morpholine and its low volatility (under environmental conditions) make the hydrosphere the pre-dominant environmental sink. Morpholine is inherently biodegradable and, although degradation is slow, there are no data to suggest accumulation in the hydrosphere. Bioaccumulation is unlikely. There are relatively few data on toxicity of morpholine to free- living organisms. However, it seems unlikely that current levels of morpholine emission cause any significant damage to the wider environment. Local effects, due for example to factory emissions or to morpholine release due to wear of tyres, remain to be evaluated. Contamination of some foods, e.g., fish, with morpholine may be due to environmental contamination, but this is uncertain. Conversion of morpholine to NMOR is the main cause of concern, especially with respect to vertebrate populations. NMOR has been reported in industrial wastewater and in soil near a factory. The presence of morpholine in water destined for processing to drinking- water is a cause for concern. 1.11 Conclusions and recommendations Morpholine does not present a toxic risk to humans at the usual levels of exposure, but its conversion to the carcinogenic NMOR should be noted. There is no evidence at present levels of exposure that morpholine poses a substantial risk to biota in the environment. 1.11.1 Recommendations for protection of human health a) Human exposure to morpholine should be avoided as far as possible. b) Contamination of food through food packaging and food processing should be avoided. c) Morpholine should not be used in rubber products intended for direct contact with humans. d) Morpholine should not be used in toiletry or cosmetic preparations. e) Industrial effluents should be rigorously treated to avoid entry of morpholine into drinking-water. f) In the light of the formation of carcinogenic NMOR the present occupational exposure limits should be reconsidered. 1.11.2 Recommendations for protection of the environment Spills and shock loads to effluent treatment plants should be avoided. 1.11.3 Recommendations for further research Studies should be undertaken on the following topics: a) reproductive toxicity in mammals; b) long-term toxicity in mammals; c) effect of exposure of mammals to low levels of morpholine with and without nitrite and nitrate; d) transnitrosation by NMOR under in vivo and in vitro conditions; e) biodegradation under anaerobic conditions, especially under nitrate-reducing conditions; f) microbial catalysis of N-nitrosation under realistic conditions; g) environmental levels of morpholine in groundwater, soil and rivers used for drinking-water; h) environmental levels of morpholine around morpholine-producing and -processing factories; i) metabolism and toxicokinetics in humans as a part of the development of methods for biological monitoring of morpholine; j) monitoring of morpholine and NMOR levels in food, drinking-water and indoor air; k) data on occupational exposure should be collected and made available. 2. IDENTITY, PHYSICAL AND CHEMICAL PROPERTIES, AND ANALYTICAL METHODS 2.1 Identity CAS/IUPAC name: Morpholine Chemical formula: C4H9NO Chemical structure:
CAS registry number:
110-91-8 EEC number: 613-028-00-9 EINECS number: 2038151 UN number: 2054 Synonyms: 1-oxa-4-azacyclohexane tetrahydro-2H-1,4-oxazine tetrahydro-1,4-oxazine tetrahydro-1,4-isoxazine diethylene oximide diethyleneimide oxide diethylene imidoxide Relative molecular mass: 87.12 2.1.1 Technical product The compound is marketed under the name of "Morpholine". It is distributed as an anhydrous liquid and as 40% and 88% solutions with water (Air Products and Chemicals, 1989). 2.1.2 Impurities Morpholine is marketed as a product with approximately 99% purity (Cosmetic Ingredient Review, 1989; BUA, 1991). The exact chemical nature of the impurities depends on the production process (see section 3.2.1.3). When produced from diethylene glycol, 2-(2-aminoethoxy)ethanol is a by-product, which can be isolated and recycled (Heilen et al., 1989). Reported impurities are N-ethylmorpholine and ethylenediamine (Heilen et al., 1989) and 2-methoxy ethanol (BUA, 1991). During the production of morpholine from diethanolamine, it is possible that N-hydroxyethylmorpholine may be formed (Cosmetic Ingredient Review, 1989). Impurities in cosmetic grade morpholine have been reported to include arsenic (up to 3 mg/kg) and lead (up to 20 mg/kg) (Estrin et al., 1982). The Cosmetic Ingredient Review (1991a) lists morpholine as having insufficient data on impurities. Fajen et al. (1979) found 0.8 mg/kg N-nitrosomorpholine (NMOR) in a morpholine charge used for the production of a vulcanization accelerator in a chemical factory in Ohio. NMOR could not be detected (detection limit: 50 µg/kg) in morpholine stored under nitrogen in Germany (BUA, 1991). 2.2 Physical and chemical properties 2.2.1 Physical properties of morpholine Morpholine is a colourless, oily, hygroscopic, volatile liquid with a characteristic amine smell (Reinhardt & Brittelli, 1981). Morpholine vapour is heavier than air and as a result, the vapour can travel a significant distance to a source of ignition and "flash back". It is completely miscible with water, soluble in the usual solvents and can itself be used as a solvent (Heilen et al., 1989). It has a low solubility in alkaline aqueous solutions. Morpholine is a strong base, the 0.01% (w/w) mixture having a pH of 9.4, and the 10% (w/w) mixture having a pH of 11.2 (Texaco, 1986). Some physical and chemical properties are presented in Table 1. 2.2.1.1 Storage of morpholine Morpholine can be stored for an unlimited time in iron or steel containers if protected from atmospheric moisture and carbon dioxide. However, it is unstable in the presence of copper, zinc and their alloys and these metals should not be used in storage containers for morpholine (Heilen et al., 1989; Air Products and Chemicals, 1989). 2.2.2 Chemical properties of morpholine Morpholine can undergo a diversity of reactions. It is an amino ether; the ether function of the molecule is typically inert and most of the reactions involve the secondary amine group. Table 1. Some physical and chemical properties of morpholine Melting point (°C) -3.1a; -4.9b,c; -5d Boiling point (°C at 1013 hPa) 128.2a; 128.3c; 128.9b; 128-130d Flash point (°C) - Open cup 38b; - Closed cup 35c; 31d Autoignition temperature (°C) 275a,d; 310c; Explosion limits in air 1.4-13.1 vol% d; 1.8-11 vol% e; 1.8-15.2 vol% a Decomposition temperature > 330°Cd; > 550°C (in steam cycles)a pKa (conjugated acid) 8.33 (25°C)f; 8.36c (temperature not given) Vapour pressure (°C) 10 20 40 60 80 100 120 (kPa) 0.6 1.1 3.2 8.3 10.5 40.9 81.8 Density g/cm3 (20°C) 0.994b; 0.999c; 1.00d; 1.007a log n-octanol/water partition -0.723 (free base; calculated)g coefficient (log Pow) -1.08 (free base; calculated)h -0.66 (free base; calculated)i Solubility in water completely miscible with watera Solubility in organic solvents completely miscible with, for instance, methanol, ethanol, acetone, diethylether, benzene, toluene, xylolc,e Refractive index 1.4537-1.4545 at 20°Ce Human olfactory threshold 0.036 (mg/m3)j a Heilen et al. (1989); b Brown (1966); c Texaco (1986); d BASF (1987); e Cosmetic Ingredient Review (1989); f Lide (1990); g UBA (1990); h Leo et al. (1971); i Le Therizien et al. (1980); j Hellman & Small (1974) It reacts with inorganic acids and acid gases such as CO2, H2S, or HCN to form morpholine salts. This property is of use in the addition of morpholine as an anticorrosive in boiler systems (Brown, 1966). Morpholine can react with oxidizing agents, undergo direct chlorination, and form complexes with metallic halides. It reacts with carboxylic acids, anhydrides, chlorides and esters to form morpholides (Brown, 1966). Alkyl morpholides are formed by reaction of morpholine with alkyl halides, dialkyl sulfates or trialkyl phosphates. The N-alkylmorpholides, particularly N-methylmorpholides, and N-ethylmorpholides, are widely used as catalysts in the preparation of polyurethanes (Brown, 1966). Morpholine reacts with formaldehyde to form N-formyl-morpholine, which is used industrially as a selective solvent for the extraction of very pure aromatic compounds (Heilen et al., 1989). Morpholine reacts with fatty acids to form soaps which are used in household and automotive waxes and polishes. Their principal advantage is that the morpholine evaporates at the same rate as water, leaving a water-resistant wax base (Mjos, 1978; Texaco, 1986). Vulcanizing agents for the rubber industry are formed by the reaction of morpholine with sulfur and sulfur-containing compounds (Taylor & Son, 1982). Morpholine is flammable. Violent reaction and fire may result when the product is mixed with oxidizing agents (Air Products and Chemicals, 1989). N-nitrosomorpholine (NMOR) can be formed by reaction of aqueous solutions of nitrite with morpholine or by reaction of gaseous nitrogen oxides in aqueous solutions of morpholine (see section 4.3). 2.3 Conversion factors for morpholine 1 mg/m3 = 0.276 ppm at 20°C and 1013 hPa 1 ppm = 3.62 mg/m3 2.4 Analytical methods Methods suitable for measuring trace levels of morpholine include ion chromatography (IC), gas chromatography (GC) with packed as well as capillary columns, and high-performance liquid chromatography (HPLC), usually using reverse phase (RP) columns. The poor UV absorptivity of morpholine necessitates chemical derivatization to detect trace amounts. Detection methods include UV detectors (for HPLC) and flame ionisation detectors (FID, following GC), as well as thermal energy analysers (TEA). Photochemical methods are used but are not specific for morpholine. An overview of the analytical methods for determining morpholine in various matrices is given in Table 2. For the detection of trace amounts of NMOR, GC or HPLC together with TEA has proved to be the method of choice. The use of internal standards helps to distinguish NMOR in the sample from artifacts caused by nitrosation or transnitrosation during the work-up procedure (BUA,1991; ECETOC, 1991). 2.4.1 Determination of morpholine in air Table 2 summarizes the available methods. Air samples can be collected and concentrated by passing through silica gel or an impinger containing dilute acid. A 20-litre sample is recommended to reach concentrations between 7 and 210 mg/m3 (NIOSH, 1977). Bianchi & Muccioli (1978) collected air samples without absorption on a solvent and rapidly performed the GC. Sollenberg & Hansen (1987) described an isotachophoretic determination of morpholine using 10 mM potassium cacodylate (pH 6.5) as leading electrolyte, and 10 mM creatinine with 5 mM HCl as terminating electrolyte. This method has been used primarily to measure N-methylmorpholine in air samples from a polyurethane foam factory (Hansen et al., 1986). Aarts et al. (1990) also used an isotachophoretic method for determining morpholine in rubber samples (see Table 2). 2.4.2 Determination of morpholine in water The methods given in Table 2 (water) are suitable for the determination of morpholine in steam condensates or non-aqueous solvents. 2.4.3 Determination of morpholine in soil and sediments A GC/MS method has been used to detect morpholine in sediment and soil (Spies et al., 1987). 2.4.4 Determination in biological and other materials Morpholine has been determined in biological tissues and fluids using GC/FID (Tombropoulos, 1979). Morpholine and some of its metabolites ( N-hydroxymorpholine, N-methylmorpholine and N-methylmorpholine- N-oxide) could be separated using two complementary HPLCs, one using reversed-phase and the other ion-exchange chromatography (Sohn et al., 1982a). Morpholine has been determined in a number of foods and beverages as well as in tobacco, snuff and packaging material (see section 5.2.2). The methods used are summarized in Table 2. Generally, morpholine is extracted from the samples using steam distillation followed by purification and derivatization. Table 2. Methods for the analysis of morpholinea Matrix Sample preparation Methodb Detectorb Detection Recovery References limit (%) Air adsorption on silica gel, GC FID 7 mg/m3c 100 NIOSH (1977) desorption with H2SO4, neutralization with NaOH Air collected directly GC FID 36 mg/m3 not given Bianchi & Muccioli (1978) Air absorption in 1 N KOH (impinger); GC TEA not given not given Fajen et al. extraction with dichloromethane (1979) Air adsorption on silica gel; HPLC UV not given 90-96 Simon & Lemacon derivatization to m-toluamides (235-255 nm) (1987) Air absorption on silica gel, GC NSD 0.03 mg/m3 93 ± 5% BIA (1989) extraction with methanol + 2% KOH Water derivatization to p-tosylamide, GC FID 70 ng/litre 45-67 Singer & acidification with HCl (pH 1), Lijinsky (1976a) extraction with diethylether Water addition of Cu(II), CS2 in UV/VIS VIS 10 µg/litre 89 Karweik & chloroform and NH3/NH4Cl-buffer (434 nm) Meyers (1979) Water, with Ni(II); phosphate buffer HPLC UV not given 95-100 Moriyasu et al. solutions (325 nm)d (1984) Water Cu(II); remainder; titrated titration Cu-ion- lower 98 Hassan et al. with EDTA selective mg range (1985) electrode Table 2 (cont'd) Matrix Sample preparation Methodb Detectorb Detection Recovery References limit (%) Water derivatization with HPLC VIS < 10 µg/litrec 9-97 Koga & 1,2-naphthoquinone-4-sulfonate, (436 nm) Akiyama (1985) extraction with dichloromethane Water derivatization to benzene- GC FPD < 2 ng approx.100 Hamano et al. sulfonamide; extraction with (1980) n-hexane Steam addition of KOH to pH > 10 GC FID 1 mg/litre > 90 Malaiyandi et condensate al. (1979) Steam none IC CD 100 µg/litre 91-97 Gilbert et al. condensate (1984) Steam acidification with HCl; derivatization HPLC VIS 30 µg/litre 96 Lamarre et al. condensate to dabsyl amide, addition of NaHCO3 (456 nm) (1989) Blood, extraction with methanol; purificaction GC FID < 4 mg/kgc 55-70 Tombropoulos tissue, over picrate; neutralisation (tissue) (1979) urine with CaCO3 < 21 mg/litrec (blood/urine) Urine, extraction with methanol homogenized HPLCe UV (196 nm) not given not given Sohn et al. tissues in KCl, phosphate buffer, a) RP (1982a) extraction with methane b) IC Food, steam distillation; derivatization GC/GC-MS FID 200 µg/kg 45-67 Singer & drinks to p-tosylamide (food) Lijinsky (1976a) 4 µg/litre (drinks) Table 2 (cont'd) Matrix Sample preparation Methodb Detectorb Detection Recovery References limit (%) Food homogenization with HCl and GC FPD 10 µg/kg 89-100 Hamano et al. methanol; derivatization to benzene (1981) sulfonamide; extraction with n-hexane Food, addition of alkali; injection GC TEA 87 µg/litre not given Rounbehler & drinks of the liquid sample Fine (1982) Citrus steam distillation GC/GC-MS FID 200 µg/kg 95; Ohnishi et al. fruits 24-87f (1983) Tobacco, steam distillation; derivatization GC/ FID < 0.3 mg/kgc 50 Singer & smoke to p-tosylamide GC-MS Lijinsky (1976b) condensate Snuff, extraction with water; filtration; GC/ TEA 2 µg/kg 70-80 Brunnemann tobacco, acidification; extraction with GC-MS et al. (1982) packing diethylether; nitrosation; material extraction with dichloromethane Paper, extraction with HCl; nitrosation with GC TEA 3 µg/kg 90 Hotchkiss & cardboard NaNO2; extraction with dichloromethane Vecchio (1983) Rubber extraction/reextraction with GC PND 2 mg/kgc not given Lakritz & articles dichloromethane/HCl HPLC Kimoto (1980) Rubber air passed through powdered sample; isotachophoresis not given not given not given Aarts et al. articles trapped in dil. HCl (1990) a adapted from BUA (1991); b HPLC = high-performance liquid chromatography, UV = ultraviolet, GC = gas chromatography, FID = flame ionisation detector, IC = ion chromatography, CD = conductivity detector, TEA = thermal energy analyser, VIS = visible, FPD = flame photometric detection, PND = phosphorus nitrogen detector, NSD = nitrogen selective detector, RP = reversed phase; c smallest measurable value (detection limit not given); d measured as diethyldithiocarbamate; e method used primarily for the separation of morpholine metabolites; f removal efficiency of morpholine from peel 3. SOURCES OF HUMAN AND ENVIRONMENTAL EXPOSURE 3.1 Natural occurrence Morpholine is not known to occur naturally. 3.2 Anthropogenic sources 3.2.1 Production levels and processes 3.2.1.1 World producers a) Producers in USA (Chemical Marketing Reporter, 1989; 1990) - Air Products and Chemicals - BASF Co. - Dow Chemical Co. (up to the end of 1990) - Texaco Chemical Co. b) Producers in western Europe (SRI, 1990) - BASF AG, Ludwigshafen, Germany - Chemische Werke Hüls AG, Marl, Germany (up to mid-1990) - Texaco Ltd., Dyfed, Wales, United Kingdom c) Producers in Japan (Japan Chemical Week, 1991) - Koei Chemical - Nippon Nyukazai - Osaka Organic Chemical Ind. d) Producers in other countries Morpholine is manufactured in India and in the Common-wealth of Independent States (CIS). 3.2.1.2 Production figures Between 1974 and 1981, USA production was stable at about 11 000 tonnes/year (NRC, 1981). Two new plants were planned in the USA in the 1980s, namely BASF (with an estimated capacity of 8200 tonnes/year) and Air Products and Chemicals (no capacity given). BASF reported that in 1988 it manufactured morpholine at Geismar, Louisiana, USA, as well as importing it from the parent plant in Germany. The combined import/production volumes were about 30% of a 9000 tonnes/year market, i.e. 2700 tonnes per year (Dynamac Corporation, 1988). In Germany, about 12 000 tonnes were produced in 1988, around 75% being exported (BUA, 1991). Production figures from other European countries are not available. In Japan, 1500-1600 tonnes/year is produced (Japan Chemical Week, 1991). In India, 200-500 kg/day (60-150 tonnes per year) is manufactured (Subrahmanyam et al., 1983). Production data from other countries are not available. It is estimated that elsewhere in the world around 1000 tonnes of morpholine are produced annually. 3.2.1.3 Production processes Three methods of producing morpholine have been described: a) Reductive ammonation of diethylene glycol and hydrogen at a pressure of 30-400 × 105 Pa and temperature of 150-400°C. Possible catalysts include copper, nickel, cobalt, chromium, molybdenum, manganese, platinum, palladium, rhodium and ruthenium. Morpholine is recovered by fractional distillation (Mjos, 1978). b) Dehydration of diethanolamine with a strong acid such as oleum, concentrated sulfuric acid or concentrated hydrochloric acid. The acid is neutralized by the addition of an alkali to give the free base of morpholine. Morpholine is recovered by extraction using an organic solvent or concentrated aqueous alkali followed by distillation (Mjos, 1978). c) Heating bis(chloroethyl)ether and anhydrous ammonia in a closed vessel to 50°C for 24 h. After venting the excess ammonia, the product is filtered from ammonium chloride, and purified morpholine obtained by distillation (Mjos, 1978). BASF (Germany) uses method a in a continuous process in a closed system, and the Texaco Chemical Company also uses method a. Hüls (Germany) produced morpholine up to 1990 using method b (BUA, 1991). Air Products and Chemicals use a low-pressure process in their plant at Pace, Florida, USA (NRC, 1981). 3.2.1.4 Losses to the environment during normal production A USA study on atmospheric morpholine releases was conducted by Anderson (1983). No direct measurements were taken, and estimates of morpholine emissions were based on analogy with emissions from ethylene oxide production. Total annual emissions (process, storage and fugitive emissions) from the processing to rubber accelerators (at 96 USA sites) and optical brighteners (at 128 USA sites) were estimated at 5100 kg/year. Morpholine emission from miscellaneous uses were estimated at an additional 900 kg/year (Anderson, 1983). 3.2.1.5 Methods of transport Morpholine should be stored and transported in iron or steel containers (Air Products and Chemicals, 1989). 3.2.1.6 Accidental release There are no reports available on accidental releases of morpholine. 3.2.2 Uses Morpholine is an extremely versatile chemical. It is most important as a chemical intermediate in the rubber industry, in corrosion control, and in the synthesis of a large number of drugs, crop protection agents, dyes and optical brighteners (Texaco, 1986; Heilen et al., 1989). Morpholine is a solvent for a large variety of organic materials, including resins, dyes and waxes (Texaco, 1986). It can be used as a catalyst. Morpholine is still used in the USA in toiletry and cosmetic products at concentrations up to 5% (Cosmetic Ingredient Review, 1989). It is permitted for use in the USA in several direct and indirect food additive applications. The use pattern, which varies from country to country, is shown in Table 3. Approximately 33% of USA-produced morpholine is used as intermediates for rubber accelerators and 25% as corrosion inhibitor in steam boiler systems (Mjos, 1978). A high proportion (25-50%) of the morpholine produced in Germany is used for optical brighteners in detergent formulations. In Germany, morpholine-based vulcanization auxiliaries are either imported or have been replaced by other products. The use of about half of the morpholine produced in Germany could not be identified (BUA, 1991). 3.2.2.1 Rubber chemicals Morpholine derivatives are used in rubber vulcanization, stabilization and the manufacture of special high-speed tyres. Morpholine may be released during rubber processing (Mjos, 1978; Heilen et al., 1989; BUA, 1991). 3.2.2.2 Anticorrosion agent Morpholine has a volatility similar to water. It is therefore widely used as a neutralizing amine in combating carbonic acid corrosion in condensate return lines in steam boiler systems as well as in aqueous hydraulic liquids and similar systems. Table 3. Use pattern for morpholine (tonnes/year) USA (1981)a Germany (1988-90)b Rubber chemicals 4920 (40%) Corrosion inhibitors 3690 (30%) small amounts Optical brighteners 615 (5%) 750-1500 (25-50%) Alkyl morpholines 300-400 (10-13%) Waxes and polishes 615 (5%) < 100 (< 3%) Diazotype/blueprints 100 (3%) Miscellaneous/no information 2460 (20%) < 900-1750 (30-60%) a From: Mannsville Chemical Products (1981) b From: BUA (1991) Morpholine vapours protect silver and other metals against corrosion and tarnish by acid fumes such as SO2 and H2S. Corrosion of metal aerosol containers and valves can also be prevented by the use of low levels of morpholine (Texaco, 1986). Morpholine is effective in hydraulic system fluids based on glycols, where various metals are in contact with the fluid at the same time (Brown, 1966). Morpholine derivatives have been used as corrosion inhibitors in mineral lubricating oil, turbine oils, for protecting storage tanks, pipes and other devices used in handling petroleum distillates, and for inhibiting the corrosive action of grease-proof paper on steel and other metals (Texaco, 1986). 3.2.2.3 Waxes and polishes Salts of morpholine with long-chain fatty acids, such as oleic or stearic acid, have wax-like properties and are used as emulsifying agents in the formulation of water-resistant waxes and polishes for automobiles, floors, leather and furniture. When the loosely-bound fatty acid-morpholine compound breaks down, the morpholine component evaporates at approximately the same rate as water, leaving a film highly resistant to water spotting and deterioration. Morpholine is typically present in concentrations up to 2% (Texaco, 1986). Morpholine is no longer employed in the production of waxes and polishes in Germany (BUA,1991). 3.2.2.4 Optical brighteners Optical brighteners are used in detergent formulations in the soap and detergent industry. The diaminostilbene triazine type brightener with morpholine as a substituent on one of the triazine rings is particularly effective on cellulosics and is used in home laundry detergents because it is stable to chlorine bleaches (Texaco, 1986). 3.2.2.5 Catalysts Morpholine derivatives such as N-methylmorpholine and N-ethylmorpholine are used as catalysts for the production of polyurethane foams. 3.2.2.6 Pharmaceuticals Morpholine derivatives are used as analgesics and local anaesthetics (Texaco, 1986; Fisher, 1986; Rekka et al. 1990; Cusano & Luciano, 1993), antibiotics (Kleemann & Engel, 1982; Schröder et al. 1982; BUA, 1991), antimycotics (Lauharanta, 1992; Reinel & Clarke, 1992) and for plaque control in dentistry (Collaert et al., 1992a,b). 3.2.2.7 Bactericides, fungicides and herbicides Several morpholine derivatives, e.g., morpholinium salts of certain acylated sulfonamides, possess bactericidal activity. Morpholine hydroperiodide has been used as a water disinfectant (Texaco, 1986). Morpholine fungicides are used for agricultural purposes (Mercer, 1991), as foliar fungicides with protective and curative properties for the control of powdery mildew and rust (Brouwers et al., 1992; Leenheers et al. 1992), and as foliar fungicides for cereals (Ackermann et al., 1989). Morpholine is also used in the preparation of herbicides that can be applied either to the soil before the weeds emerge or to the growing plants (Texaco, 1986). 3.2.2.8 Food additive applications USA Federal regulations permit the use of morpholine in several direct and indirect food additive applications (Cosmetic Ingredient Review, 1989). Certain fatty acid salts of morpholine can be used as components of protective coatings applied to fruits and vegetables with the concentrations not allowed to exceed the level required to produce the intended effect (US FDA, 1988). Indirect food additive possibilities include the use of morpholine as a corrosion inhibitor for steel and or tinplate used in food containers (US FDA, 1984a), as a defoaming agent used in the manufacture of paper and paperboard for food-packaging materials (US FDA, 1984b), as a component of adhesives (US FDA, 1984c), and as a defoaming agent in animal glue used for packaging materials (US FDA, 1984d). Morpholine is only allowed as a boiler-water additive in concentrations up to 36 mg/m3 (10 ppm), but is not permitted when the steam comes into contact with food, milk or milk products (US FDA, 1984e). In Germany, the use of morpholine in water-repellent food packaging material is forbidden (BUA, 1991). 3.2.2.9 Cosmetics Morpholine is used in the USA by the cosmetic industry. Data submitted to the US Food and Drug Administration (US FDA) in 1981 and 1986 (Cosmetic Ingredient Review, 1989) and in 1991 (Cosmetic Ingredient Review, 1991a) show that at least in the USA, morpholine is still used in cosmetic products. In 1981, morpholine was used in 38 cosmetic preparations, the majority (32) being mascara. It is also used in eyeliner, eye shadow and skin care preparations. Morpholine is listed by the Cosmetic Ingredient Review as an ingredient used in cosmetics, although there are insufficient data to substantiate safety (Cosmetic Ingredient Review, 1989,1991a). Morpholine is listed in Annex II of the EEC Cosmetics Directive. Annex II lists compounds that must not be used in cosmetic formulations. In Germany, the use of morpholine in cosmetic preparations has been forbidden since 1985 (BUA, 1991) and in the EU since 1986 (EEC, 1990). Hydroxybenzomorpholine (HBM) is used as a colour additive for hair dyes or colorants. In the FDA voluntary cosmetic registration programme, it is listed as a component of 46 products. Isostearamidopropyl morpholine lactate (IML), an antistatic agent primarily used in hair conditioners and products, is present in five reported cosmetic items. Quaternary morpholinium salts are given as possible ingredients in hair conditioners and deodorants in wave formulations (Mjos, 1978). The presence of morpholine as an ingredient in shampoos has been reported (Spiegelhalder & Preussmann, 1984). However, a German survey in 1990 showed that morpholine was not present in shampoos in Germany (BUA, 1991). 4. ENVIRONMENTAL TRANSPORT, DISTRIBUTION AND TRANSFORMATION 4.1 Transport and distribution between media 4.1.1 Volatilization As morpholine is freely miscible with water, a Henry's constant cannot be reliably calculated. However, estimates for this constant (BUA, 1991) have been published. Donath et al. (1977) measured the distribution coefficient (between vapour and liquid phase) for morpholine as a function of temperature (50 to 130°C). They found that the rate of volatilization was dependent on the concentration of morpholine in the liquid phase. Extrapolation of their curve to 20°C for morpholine concentrations of 10-15 mg per litre gives a value of 0.02, corresponding to a Henry constant value of 49 Pa.m3.mol-1. Calculations from Bosholm (1983) give a value corresponding to 244 Pa.m3.mol-1. According to the classification of Smith et al. (1980), morpholine belongs to the group of "moderately volatile" substances. 4.2 Transformation 4.2.1 Biodegradation Morpholine seems to be degraded only by a restricted range of microbes, mostly Mycobacterium spp., which have specially adapted (acclimated) themselves to this substrate under specific conditions (Knapp et al., 1982; Cech et al., 1988; Knapp & Brown, 1988; Brown & Knapp, 1990). Dmitrenko et al. (1985, 1987) identified an Arthobacter sp. capable of doing this. Dmitrenko & Gvozdyak (1988) reported the isolation of morpholine-degrading mycobacteria and found that these organisms could utilize morpholine anaerobically with nitrate as a terminal electron acceptor. Calamari et al. (1980) and Tölgyessy et al. (1986) both reported the resistance of morpholine to biodegradation. In addition, Tanaka et al. (1968) and Subrahmanyam et al. (1983) both reported the failure of effluent treatment systems to degrade morpholine. Knapp & Brown (1988) isolated 13 morpholine-degrading bacterial strains of Mycobacterium spp. in pure culture from their laboratory activated sludge plant (ASP). They also found morpholine-degrading bacteria in samples from a number of other habitats, including activated sludge (from two sewage works), water from two rivers, compost, soil and leaf litter. In all cases, there was a lag period of 10 to 20 days before degradation could be detected. The growth rate of these morpholine-degrading strains is slow not only on morpholine but also on other substrates. Swain et al. (1991) studied the catabolic pathway for morpholine when Mycobacterium strain MorG was grown with morpholine as sole source of carbon and nitrogen. The results indicated that morpholine is initially catabolized to 2-(2-aminoethoxy)acetate which can be oxidatively cleaved to give rise to glycolate and indirectly to ethanolamine. Mazure (1993) showed that morpholine can be degraded by mixed cultures of gram-negative bacteria. Two mixed cultures were studied, one containing 9 and the other 10 bacterial strains, mostly pseudomonads. Interestingly, none of the individual strains was capable of sustained growth with morpholine as a sole carbon and nitrogen source. The rate at which the two mixed cultures degraded morpholine was similar to that shown by Mycobacterium aurum in a study by Cech et al. (1988). Emtiazi (1993) reported that several Gram-negative bacteria isolated as degraders of pyrrolidine and piperidine could oxidize morpholine but could not grow on it as the sole source of carbon and nitrogen. However, at least one strain could utilize morpholine as a source of nitrogen if given succinate as a carbon source; the degradation of morpholine was slower than that shown by mycobacteria. 4.2.1.1 Batch biodegradation tests In several early studies all employing some form of biological oxygen demand (BOD) test with unadapted inocula, morpholine was found to be resistant to biodegradation (Swope & Kenna, 1950; Lamb & Jenkins, 1952; Mills & Stack, 1953). However, Mills & Stack (1955) in a later study utilized an inoculum adapted (for 116 days) to the presence of morpholine and found that morpholine was degraded in a BOD test after 4 days. Strotmann et al. (1993) assessed the biodegradability of morpholine using a test similar to that of the modified OECD Screening Test (die-away test in an open system with low bacterial density) (OECD guideline 301 E; OECD, 1981a,b). The inoculum used was taken from an industrial sewage plant. As morpholine was regularly discharged into this treatment plant, the inoculum was regarded as adapted. An unadapted inoculum was obtained from a laboratory-scale wastewater treatment plant operated with municipal wastewater. The extent of degradation during the 28-day test (20°C incubation) was determined by following the decrease in dissolved organic carbon (DOC). The results showed that morpholine was degraded by both adapted and unadapted inoculum. The lag period before start of degradation was about 15 days for the adapted inoculum and 16 days for the unadapted. The lag period given for the adapted cultures in this study was rather long, especially considering the result of the Zahn-Wellens test (below) carried out using the same inoculum. The degradation period was 5 to 7 days for both unadapted and adapted cultures. Under the conditions in this test, morpholine showed ready biodegradability. The activated sludge concentration was about 30 mg mixed liquor suspended solids (MLSS) per litre. Initial morpholine concentration was 36 mg/litre. A Zahn-Wellens Test (a test to estimate inherent biodegradability) according to OECD guideline 302 B (OECD, 1981a,b) was also performed by Strotmann et al. (1993). The adapted and unadapted sludges were obtained as above, but the activated sludge concentration was higher (1 g MLSS/litre). The concentration of morpholine was about 725 mg/litre resulting in an initial DOC of 400 mg/litre; test duration was 31 days. Results showed that the lag period with unadapted and adapted cultures was about 16-20 days and 7 days, respectively. In both cultures the extent of DOC removal was more than 90% (morpholine was therefore rated as "inherently biodegradable"). After the lag period, the maximum biodegradation rates for adapted and unadapted activated sludges were 6 g morpholine/kg MLSS per h and 3 g morpholine/kg MLSS per h, respectively. In this test the use of an adapted inoculum significantly shortened the lag time. The authors suggested that this effect, which was not observed in the modified OECD screening test, might be due to the higher inoculum concentration used in the Zahn-Wellens test. 4.2.1.2 Biodegradation in laboratory-scale wastewater treatment plants A laboratory-scale wastewater treatment plant operating with municipal wastewater was supplemented with 4.5 to 5.0 mg morpholine/litre. More than 99% of the ammonia could be eliminated by nitrification. The total organic carbon (TOC) degradation ranged between 80 and 94%. The time taken for the sludge to adapt to morpholine was 10 to 12 days. The adapted sludge of this treatment plant was reported to be able to degrade morpholine for a period of more than one month to more than 90% (Strotmann et al., 1993) In a die-away test (EEC, 1983), the kinetics of morpholine biodegradation in the above treatment plant were determined (Strotmann et al., 1993). At 20 h after adding 40 mg morpholine per litre, 65% of the morpholine was degraded; after 25 h less than 10% of the added morpholine was still present. In this adapted treatment plant, the degradation occurred without any lag period, the maximum degradation rate (3 g morpholine/kg MLSS per h) being reached after 18 h. According to the authors, morpholine concentrations of 5 mg/litre in wastewater can be well degraded in an adapted wastewater treatment plant. However, shock loading with high concentrations (35 mg/litre) can result in high concentrations of undegraded morpholine in the effluent. A model activated sludge plant capable of treating a simple industrial waste influent (pH 5.4-5.6) containing morpholine, acetate and salicylate and mineral salts was set up (Brown & Knapp, 1990). The activated sludge was taken from the treatment plant of a morpholine-containing effluent from a large chemical factory. It was found that when morpholine was absent from the influent, the ability of the activated sludge to degrade this compound was subsequently reduced. This was shown by an increase in the lag period before morpholine degradation could be detected in a die-away test from over 40 days, and was accounted for by a decline in the specific population of morpholine-degrading microorganisms. The morpholine degradative phenotype was shown to be genetically unstable in several pure cultures of mycobacteria (Brown et al., 1990). Since morpholine-degraders have a low growth rate, they can only establish themselves in activated sludge if the Mean Solids Retention Time (sludge age) is relatively long. Under semi-continuous conditions (800 mg morpholine/litre), a sludge age of 8 days was needed to achieve complete morpholine degradation (Cech & Chudoba, 1988). In their investigations into morpholine-degrading bacteria in river water from several different sites in Yorkshire, United Kingdom, over a 3-month period, Knapp & Whytell (1990) found, as a general trend, that the numbers of morpholine-degraders increased and die-away lag times decreased as water passed downstream. This was probably related to the cumulative polluting effects of discharges of effluent to the rivers. The number of morpholine-degraders found in this investigation agreed with similar studies from rivers in eastern England. Of the 58 die-away tests carried out on 29 water samples, only 3 (all from water classed as very clean) failed to reveal morpholine biodegradation, although in several sites the numbers were near the limits of detection (Knapp & Whytell, 1990). 4.2.2 Abiotic degradation 4.2.2.1 Hydrolytic degradation Morpholine can thermally decompose at temperatures used in boiler steam cycles. Agarwala (1982) found that, at 316°C, morpholine decomposed in 12 h by 2-5% only, when used in boilers at 95 kg/cm2 and 108 kg/cm2, the decomposition products being ammonia and carbonic acid products. Under the conditions found in steam-water cycles in nuclear power plants (260°C and 4.55 MPa), ammonia, methylamine, ethylamine, ethanolamine and 2-(2-aminoethoxy)ethanol were identified as morpholine degradation products (Gilbert & Saheb, 1987; Lamarre et al., 1989). Under normal field conditions, it is assumed that morpholine is stable. However, no experimental data are available to confirm this. 4.2.2.2 Photochemical degradation Amines react rapidly with hydroxyl radicals, and the irradiation of amine-NOx mixtures in air results in the rapid conversion of NO to NO2 and in the formation of ozone, carbonyls and other products (Grosjean, 1991). The rate constant for the degradation of morpholine in the atmosphere by hydroxyl radicals has not yet been measured experimentally. Grosjean (1991) postulated a rate constant of 2-10 × 10-11 cm3.mol-1.sec-1 and gave a tentative reaction scheme based on experimental data for dialkylamines. Using the method of Atkinson (1988), a half-life (for morpholine) of less than one day has been calculated (BUA, 1991). As morpholine shows no absorption in the UV spectrum (lambda > 260 nm), direct photochemical degradation in the atmosphere or in the hydrosphere is unlikely (BUA, 1991). 4.2.2.3 Degradation by physico-chemical processes Upon combustion in the presence of sufficient oxygen, carbon monoxide, carbon dioxide and nitrogen gases are produced. Combustion under oxygen-starved conditions can result in the production of carbon monoxide, hydrogen cyanide, nitriles, cyanic acid, isocyanates, cyanogens, nitrosamines, amides and carbamates (Air Products and Chemicals, 1989). 4.2.3 Bioaccumulation There are no data on the bioaccumulation of morpholine in aquatic and terrestrial organisms. However, as the n-octanol/water partition coefficient for morpholine is log Pow = -2.55 (at pH 7), bioaccumulation is not expected (BUA, 1991). 4.3 Interaction with other physical, chemical or biological factors Due to its carcinogenic properties the formation of NMOR from morpholine has to be taken into account when assessing health and environmental aspects of morpholine. NMOR can be formed by reaction of aqueous solutions of nitrite with morpholine (Mirvish, 1975) or by reaction of gaseous nitrogen oxides, e.g., N2O3, N2O4, NOx in aqueous solutions of morpholine, even under normal environmental conditions (Challis & Kyrtopoulos, 1979; Mirvish et al., 1988; Schuster et al., 1990). Nitrogen oxide (NO) levels may be higher than was previously thought (Cooney et al. 1992; Hibbs, 1992). The conditions of nitrosation, in particular the pH, plays a significant role. In aqueous solutions, the reaction is as follows:The rate of reaction of the nitrosation of morpholine by nitrite is greatest at a pH value of 3.4, where the rate constant is 0.42 mol-2.s-1. An increase in the pH value has been shown to result in a decrease in the rate of nitrosation with nitrite (Mirvish, 1975; Archer et al., 1977), and the rate was almost zero at pH > 7 (Archer et al., 1977). In contrast, nitrosation with gaseous nitrogen oxides (N2O3, N2O4, NOx) can take place over the whole pH range (Challis & Kyrtopoulos, 1979; Meiners et al., 1980). Cooney et al. (1987) found that, under certain conditions, the yield of NMOR at pH 7 was ten times higher than at pH 2, but there was no further increase beyond this pH. Some nitrosamines, particularly alpha-nitrosamine aldehydes, are potent transnitrosation reagents and are capable of nitrosating morpholine at pH 7.9 (Loeppky et al., 1987). Numerous reaction accelerators are known, e.g., thiocyanate (Boyland et al., 1971), halides (Mirvish, 1975), formaldehyde (Archer et al., 1977) and nitrosophenols, e.g., p-nitroso- o-cresol (Davies et al., 1980). Enhancement of the nitrosation of morpholine by nitrogen dioxide was reported in the presence of iodine (Challis & Outram, 1979), vanillin and related phenols (Cooney & Ross, 1987) and halides, particularly bromide (Cooney et al., 1987). In contrast, the following compounds have been reported to inhibit the nitrosation of morpholine almost completely: ascorbic acid (Lathia & Schellhöh, 1981; Leach et al., 1991); urea or ammonium sulfamate (Mirvish et al., 1972); gallic acid and sulfite (Mirvish, 1975); L-cysteine and DL-methionine ( in vitro study under physiological conditions, Lathia & Edeler, 1989), catechol and 4-hydroxychavicol (Shenoy & Choughuley, 1989); alpha-tocopherol (Norkus et al., 1986; Cooney et al., 1987; Schuster et al., 1990); sulfhydryl compounds such as cysteine, cysteamine, glutathione and thioglycolic acid, as well as extracts of onion and garlic juice (Shenoy & Choughuley, 1992). Vitamin C, glucose, mannitol, cabbage juice, orange juice, shiitake mushroom extract and saliva inhibited the nitrosation of morpholine in vitro, but catechin, epicatechin and tea extract enhanced the same reaction (Ohnishi, 1984). The inhibitory effect of Chinese tea on the formation of NMOR in vitro and in vivo has also been described (Wang & Wu, 1991). Several C-nitro compounds, in particular tetranitromethane, have been demonstrated to transnitrosate morpholine to form NMOR (Fan et al., 1978). C-nitro compounds are widely used in industry as pesticides, bactericides, colouring agents, drugs and perfumes. Singer (1980) described the transnitrosation of morpholine with nitrosamines and nitrosureas under acid conditions in the presence of thiocyanate. These reactions are dependent on the pH value and steric and electronic factors, as well as on the basicity of the amines. In a model study, the nitrosation of morpholine by nitro-nitroso compounds, such as those found in fried bacon, was observed (Liu et al., 1988). NMOR can be formed in vivo in humans and has been found in various tissues and fluids such as human saliva (Boyland et al., 1971; Wishnok & Tannenbaum, 1977) and human gastric juice (Ziebarth, 1973; 1974; Sen & Baddoo, 1989; Yurchenko et al., 1990). NMOR formation has been reported in rat lungs (Postlethwait & Mustafa, 1983), whole mice (Iqbal et al. 1980; Norkus et al. 1984), stomach (Furman & Rubenchik, 1991), hepatocytes isolated from woodchucks (Marmota monax) (Liu et al., 1992) and microorganisms (Archer et al., 1979; O'Donnell et al., 1988; Calmels et al., 1991a,b). Bacterial catalysis of N-nitrosation of morpholine has been reported in a range of bacteria often isolated from the human gut or urinary tract infections (Suzuki & Mitsuoka, 1984; Calmels et al., 1987, 1988; Mackerness et al., 1989), including the ubiquitous gut bacterium Escherichia coli and Pseudomonas aeruginosa, which is also widespread in the aquatic environment. Bacterial catalysis of N-nitrosation of morpholine is heat labile and is optimal at neutral to slightly alkaline pH (Calmels et al., 1985; Leach et al., 1987). N-nitrosation by bacteria is generally associated with the ability to reduce nitrate. It appears that those that reduce nitrate to nitrogen or nitrogen oxides (e.g., P. aeruginosa) can nitrosate at much greater rates than those (e.g., E. coli) that only reduce nitrate to nitrite (Leach et al.,1987; Calmels et al., 1988). There is considerable variation between strains of the same species. Bacterial N-nitrosation of morpholine has been shown to follow Michaelis-Menten kinetics (Calmels et al., 1985; Leach et al., 1987). E. coli A10, for example, displays Km values of 7.4 mmol/litre for morpholine and 11.4 mmol/litre for sodium nitrite. It has been shown that the rate of bacterial N-nitrosation of secondary amines is inversely related to the pKa of the amine (Calmels et al., 1985; Leach et al., 1987, 1991), with a linear relationship between log10 of the rate of nitrosation and pKa. Morpholine, having a relatively low pKa, is thus relatively susceptible to nitrosation compared, for example, to alkyl amines. It has been shown that ascorbate is capable of inhibiting nitrosation of morpholine by P. aeruginosa (Leach et al., 1991). Although most nitrosation studies have used whole bacteria, an enzyme catalyzing N-nitrosation of morpholine has been isolated and purified from two denitrifying bacteria (Calmels at al., 1990). 4.4 Ultimate fate following use 4.4.1 Fate of morpholine in various products Morpholine is an important industrial chemical with a wide range of applications (see section 3.2.2) and therefore may be present in many industrial emissions. Its use as a corrosion inhibitor in boiler water means that morpholine and its decomposition products will be found in boiler wastewater, including water from power plants using morpholine. In a study by McCain & Peck (1976), morpholine concentrations in the discharge streams of three Hawaiian power plants ranged from not detectable to 0.008 mg/litre, suggesting that the potential for human exposure is small. Its use in the manufacture of rubber additives results in an indefinable amount of morpholine being released into the hydrosphere or geosphere not only during manufacturing processes but also through tyre abrasion and disposal of used tyres. Morpholine is released during vulcanization processes using morpholine-containing accelerators such as 2-( N-morpholino- thio)benzothiazole (MBS) (Badura et al., 1989). Some of the amine is released into the atmosphere and some is bound to the rubber. Even the accelerator itself can contain free amine. The morpholine content of MBS is < 0.4% by weight. This level can be higher if the accelerator is not stored properly and is exposed to heat or moisture (BUA, 1991). Aarts et al. (1990) detected free volatile morpholine at concentrations of between 70 (new) and 230 mg/kg (old) in samples of dithio-bis-morpholine (DTBM). After extraction in water for one hour in an ultrasonic bath, ten times this amount was detected, i.e. 960 mg/kg in newly made and 2750 mg/kg in stored DTBM. These quantities of amine could be released during vulcanization. Optical brighteners adhere to clothes during the first wash but tend to be released into the wastewater in subsequent washings. Although these substances are not themselves biologically degradable, they have been found to disappear from wastewater after a two-step biological treatment presumably due to the high rate of adsorption to the sludge particles (Jakobi et al., 1983). As mentioned in section 3.2.2, morpholine is released into the environment by volatilization through its use in waxes and polishes (Texaco, 1986). 4.4.2 Waste disposal Controlled incineration is the preferred method of disposal (Sittig, 1985; Air Products and Chemicals, 1989). The incinerator should be equipped with a scrubber or thermal unit. Nitrogen oxide emissions should meet environmental regulations. 5. ENVIRONMENTAL LEVELS AND HUMAN EXPOSURE 5.1 Environmental levels 5.1.1 Ambient air No data are available on levels of morpholine in ambient air. 5.1.2 Water 5.1.2.1 River water Since mid-1990, the levels of morpholine in some rivers in North Rhine-Westphalia, Germany, have been monitored (BUA, 1991). No morpholine could be detected at three different points in the River Rhine or in five of its tributaries (detection limit, 5 µg/litre). No morpholine was found in samples of Tennessee freshwater (detection limit, 0.07 µg/litre) (Singer & Lijinsky, 1976a). In 1979, 33 water samples were collected at 11 sites in Japan, but no morpholine could be detected (detection limit, 1-5 µg/litre) in any of the samples (Environment Agency Japan, 1980). 5.1.2.2 Wastewater There are no data on morpholine levels in wastewater. A single sample of wastewater from a tyre chemical factory in Ohio, USA was found to contain 3 µg NMOR/litre (Fajen et al., 1979). In England, samples were taken from the inlets and outlets of four sewage treatment plants (Richardson et al., 1980). NMOR (100 µg/litre) was found only in the outlet of a cutting-fluid recovery plant. 5.1.3 Sediment Spies et al. (1987) examined contaminated sediments in San Francisco Bay, USA and found several benzothiazoles, including 2-(4-morpholinyl)-benzothiazole, which is present as an impurity in commercial 2-(morpholinothio)-benzothiazole used in motor tyres. The authors carried out weathering tests on this latter commercial substance and found that the morpholine impurity was environmentally stable. They suggested that the 2-(4-morpholinyl)-benzothiazole found in the sediments (up to 0.36 mg/kg dry weight) was a result of accumulated street run-off. Morpholine itself could not be detected. In 1979, 33 bottom sediment samples were collected at 11 sites in Japan, but no morpholine could be detected (detection limit, 0.01-0.5 mg/kg) in any of the samples (Environment Agency Japan, 1980). 5.1.4 Soil There are no data on the presence of morpholine in soil. 2-(4-Morpholinyl)-benzothiaozole (273 µg/kg dry weight) was detected 1.6 km from a motorway in California, USA (Spies et al., 1987) (see also section 5.1.2). NMOR (4.4 mg/kg) was detected in a single sample of soil near to a tyre chemical factory in Ohio, USA (Fajen et al., 1979). 5.1.5 Terrestrial and aquatic organisms Levels of morpholine found in single or small samples of fish are given in Table 6, but the sample numbers are too low to make an evaluation. No other data are available. 5.2 General population exposure 5.2.1 Indoor air No data on indoor air exposure to morpholine are available. Analysis for NMOR in the air inside new cars showed levels of up to 2.5 µg/m3. Levels were 4 to 10 times lower when the air-venting system was working, indicating that NMOR exposure is limited to the first few minutes of each trip (Rounbehler et al., 1980). During a simulation of conditions inside cars on a hot day, concentrations of up to 0.4 µg NMOR/m3 were measured at 60°C (Dropkin, 1985). 5.2.2 Drinking-water and food There are no data on the morpholine content of drinking-water. Food can become contaminated with morpholine in several ways: (a) through direct treatment of fruit with waxes containing morpholine for conservation purposes; (b) by use of packaging material containing morpholine, and (c) through steam treatment during processing. Ohnishi et al. (1983) found morpholine at concentrations of < 71.1 mg/kg in the peel of retail citrus fruits in Japan. In the pulp (flesh) of the fruits the level was much lower, being less than 0.7 mg/kg (Table 4). Marmalade made from whole fruits contained concentrations of morpholine between 0.3 to 0.7 mg/kg. If the fruits were previously washed in washing-up liquid, morpholine concentrations were reduced, but only by 25%. Even if the fruit was boiled for 20 minutes, a third to a quarter of the morpholine still remained. The morpholine removed by these processes could be detected quantitatively in the washing and boiling water (Ohnishi et al., 1983). Table 4. Morpholine content of citrus fruits and marmalade from citrus fruitsa Sample Number Morpholine (mg/kg)b Orange (variety a)c peel 12 n.d.-57.0 fruit pulp 3 0.2-0.7 Orange (variety b)c peel 6 5.0-71.1 fruit pulp 1 0.3 Mandarine peel 2 16.1-18.0 fruit pulp 1 n.d. Lemon peel 2 n.d.-5.2 fruit pulp 1 n.d. Grapefruit peel 2 2.8-7.0 fruit pulp 1 n.d. Marmalade from citrus fruits 4 0.3-0.7 a adapted from Ohnishi et al. (1983) b n.d. = not detectable (detection level 0.2 mg/kg), presumably fresh weight c variety not specified Sen & Baddoo (1989) reported the morpholine and NMOR content of waxed and unwaxed apples of Canadian origin, obtained either direct from the packers or from retail sources. Liquid wax spray is used as a protective coating on fruit and vegetables to reduce moisture loss and thereby extend the shelf-life of the product. Apple homogenates and liquid waxes were analysed for their morpholine contents (Table 5). Although the concentrations of morpholine found in waxed apples were high, NMOR could not be found in any of the waxed or unwaxed samples. Low levels of morpholine in the unwaxed apples could be due to contamination during packing or transport. Singer & Lijinski (1976a) analysed a variety of foodstuffs for the presence of morpholine but the sample size was too small to draw any conclusions. The results are given in Table 6. The sources of contamination with morpholine are in these cases not clear. The possibility of artifacts is unlikely according to the authors. Table 5. Concentration of morpholine and NMOR (mg/kg) in samples of liquid waxes and waxed and unwaxed applesa Liquid wax Unwaxed apples Waxed apples NMOR morpholine NMOR morpholine NMOR morpholine 0.286 27 300 n.d. n.d. n.d. 4.3 0.668 31 500 n.d. 0.118 n.d. 4.9 0.138 24 400 n.d. 0.016 n.d. 6.3 0.277 38 500 n.d. 0.041 n.d. 7.1 0.152 22 500 n.d. n.d. n.d. 4.0 0.585 33 300 n.d. 0.018 n.d. 7.7 a adapted from Sen & Baddoo (1989); n.d. = not detected (detection limit: 0.005 mg/kg for morpholine, 0.0005 mg/kg for NMOR) Table 7 summarizes the results of investigations into the concentrations of morpholine and NMOR in prepacked milk products (Hoffmann et al., 1982). The values range from 5-77 µg/kg for morpholine and "not detectable" to 3.3 µg/kg for NMOR. Contamination of prepacked foodstuffs with morpholine might be explained by the use of morpholine in steam boiler systems for paper and cardboard production. Hotchkiss & Vecchio (1983) found morpholine concentrations of between 0.098 and 8.4 mg/kg (mean 0.38 mg/kg) in food packaging. A sample of flour nearest the wall of the paper bag contained 1.1 µg NMOR/kg. The bag itself contained 33.0 µg NMOR/kg. In an experimental 72-h incubation at 100°C, between 1 and 2.3 µg NMOR/kg migrated from packaging material to various dry foods. Sen & Baddoo (1986) investigated the migration of NMOR out of waxed packaging material into margarine. Waxed wrappings and margarine samples taken 1 cm from the outer layer of the block contained NMOR (5-73 µg/kg and 0.5-1.4 µg/kg, respectively). NMOR was not detectable in those samples taken from the inside of the block. Samples taken of margarine packed in aluminium backed wrappers, specially coated waxed papers or plastic containers were negative for NMOR (detection level, 0.5 µg/kg). Aitzetmüller & Thiele (1982) found no NMOR in 20 margarine samples from different countries (detection limit, 0.5 µg/kg). Table 6. Morpholine content in various food samplesa Food No. of Concentration References samples (mg/kg)b Fish Fish sausage 5 n.d. Hamano et al. (1981) Cod roe 3 n.d. Hamano et al. (1981) Codc -d tracese Singer & Lijinsky (1976a) Spotted troutc 1 6 Singer & Lijinsky (1976a) Smallmouth bassc 1 < 0.7 Singer & Lijinsky (1976a) Salmonc 1 1 Singer & Lijinsky (1976a) Ocean perchc -d 9.0 Singer & Lijinsky (1976a) Tuna (in tins) -d < 0.6 Singer & Lijinsky (1976a) Meat Baked ham 5 0.2 Hamano et al. (1981) Baked ham -d 0.5 Singer & Lijinsky (1976a) Frankfurter sausages -d 0.4 Singer & Lijinsky (1976a) Plant products Spinach 2 n.d. Hamano et al. (1981) Miso (from soja) 2 n.d. Hamano et al. (1981) Beverages Evaporated milk -d 0.2 Singer & Lijinsky (1976a) Coffee -d 1.2 Singer & Lijinsky (1976a) Tea -d tracesf Singer & Lijinsky (1976a) Beer (in tins) -d 0.4 Singer & Lijinsky (1976a) Beer (in bottles) -d < 0.2 Singer & Lijinsky (1976a) Wine -d < 0.7 Singer & Lijinsky (1976a) a adapted from BUA (1991) b fresh weight except for tea and coffee (dry weight); n.d. = not detected (detection limit 0.01 mg/kg) c frozen from Tennesee & Columbia rivers d average from several samples; exact number not given e < 0.3 mg/kg f < 0.1 mg/kg dry weight Table 7. Morpholine and NMOR content (mg/kg) in food products and their waxed containersa Sample Food Container NMOR morpholine NMOR morpholine Butter 0.0032 0.058 0.0019 0.22 Cream cheese 0.0009 0.077 n.d. 0.68 Yoghurt n.d. 0.038 n.d. 3.06 Cottage cheese 0.0004 0.044 0.0054 17.2 "Cheese" (semi-soft) Country of origin: Germany 0.0033 0.009 n.d. 0.026 Denmark 0.0031 0.01 0.0016 0.025 Austria 0.0007 0.005 0.0012 0.022 USA 0.0014 0.008 n.d. 0.132 Gouda 0.0016 0.035 n.d. 0.035 Frozen peas n.d. 0.026 0.0031 0.057 and carrots a adapted from Hoffmann et al. (1982); n.d. = not detected (detection limit for NMOR, 0.0002 mg/kg) Gavinelli et al. (1988), in a survey in Italy, found no NMOR in a variety of foodstuffs including canned beef, pork, poultry, cured meat, milk products, malt products, domestic Italian canned wines and beers. The limit of detection was 0.3 µg/kg. Similarly, Pensabene & Fiddler (1988) found no NMOR in samples of different USA fish-meat frankfurter sausages (limit of detection, 0.2 µg/kg). These authors assumed that the positive results in their earlier work were due to artifacts. Groenen et al. (1987) found NMOR in cheese (2.8 µg/kg) and cured meat products (34 µg/kg) after addition of morpholine (10 mg/kg) in the alkaline pH range. Liu et al. (1988) suggested that the NMOR in fried bacon was formed by transnitrosation. USA Federal regulations permit the use of morpholine in several direct and indirect food additive applications (US FDA, 1984a,b,c,d,e; 1988; see section 3.2.2). Although the US Food and Drug Administration allows morpholine to be used as a direct or indirect food additive, in 1980 one of the biggest USA producers recommended its customers not to use morpholine in this way (Litton Bionetics, 1980). 5.2.3 Tobacco Morpholine was found in unburned cigarette tobacco at a concentration of 0.3 mg/kg (Singer & Lijinsky, 1976b). In cigarette smoke condensate < 5 mg/kg was detected, equivalent to 0.08 µg/cigarette. It has been established that an appreciable portion of the inhaled smoke is swallowed and retained in the stomach where nitrosation of ingested amines is known to occur (Sander & Bürkle, 1969). Brunnemann et al. (1982) analysed 10 popular snuff brands from the USA and Sweden for morpholine and volatile N-nitrosamines (see Table 8). In the five USA brands, morpholine concentrations of between 1.5 and 4.0 mg/kg were found; in the Swedish products, the concentrations were between 0.2 and 2.5 mg/kg. An analysis of the snuff containers that were made of waxed cardboard gave morpholine values of 0.17 to 4.74 mg/kg (USA) and 0.46 to 4.83 mg/kg (Swedish). The morpholine content in the snuff could have come through diffusion from the container made of waxed cardboard. Another possibility was contamination during the tobacco processing as suggested by the very high morpholine content (19.4 mg/kg) of a single sample of chewing tobacco, packaged in aluminium. NMOR formed by nitrosation from morpholine was found in 5/5 of the USA and 2/5 of the Swedish snuff samples (Brunnemann et al., 1982). Brunnemann & Hoffmann (1991) reported that since 1981 they had routinely determined the concentrations of NMOR in a leading snuff brand in the USA with the aim of creating awareness of the fact that morpholine is a precursor of NMOR and must be removed. In eight commercial snuff brands analysed in 1986 (Hoffmann et al., 1987), only three were found with traces of NMOR (9-39 µg/kg). Brunnemann & Hoffmann (1991) noted that the decrease in the NMOR content (from about 700 µg/kg in 1981 to an undetectable level in 1990) is most probably due to modifications in packaging, since snuff products in the USA are now sold in plastic containers that have no wax coatings (Table 9). Österdahl & Slorach (1983) analysed snuff and chewing tobacco on the Swedish market for volatile N-nitrosamines. NMOR was found in 9/30 samples in concentrations between 0.4 and 4.0 µg/kg (Swedish brands) but in none of the three USA brands. One of three chewing tobacco brands contained 0.8 µg morpholine/kg. Table 8. Nitrosomorpholine and morpholine in snuff containersa Snuff brand Snuff tobacco (µg/kg)b Snuff container (µg/kg)c NMOR morpholine NMOR morpholine USA I 24 2800 34 845 II 690 1500 10 170 III 690 4000 230 4740 IV 630 3200 4 90 V 31 2200 3 140 Sweden I 44 820 4 1750 II < 2d 200 3 460 III < 2d 780 13 4830 IV 10 940 23 4290 V < 2d 2500 n.d.e n.d. a from Brunnemann et al. (1982) b based on dry weight c uncorrected for moisture; had previously contained snuff. Containers of USA I-III and Sweden I-IV were cardboard boxes with a metal lid, USA IV were plastic containers with individual snuff portions in porous paper bags; USA V was a plastic container; Sweden V were individual snuff portions in Al-bags. d detection limit = 2 µg/kg e n.d. = not determined Table 9. NMOR in fine-cut snuff (on the basis of dry tobacco weight)a Year Yield (µg/kg) 1981 690 1984 29.4 1984/85 238 1985 29 1986/87 < 2b 1987 43 1990 < 2 a from Brunnemann & Hoffmann (1991) b detection limit = 2 µg/kg A survey of smokeless tobacco products commercially available in 1987-1988 showed that trace levels of NMOR were still found in some United Kingdom (mean 0.5 µg/kg) and Swedish (mean 1 µg/kg) oral tobacco products packed in waxed containers, but no NMOR was detected in Indian zarda or European nasal snuff (Tricker & Preussmann, 1991). 5.2.4 Cosmetics and toiletry articles Morpholine is used in some countries in cosmetic products as a surfactant and emulsifier at concentrations up to 5% (Cosmetic Ingredient Review, 1989). Data submitted to the Food and Drug Administration (FDA) in 1981 by cosmetic firms participating in the voluntary cosmetic registration programme indicated that morpholine was used in a total of 38 cosmetic products including eyeliner, eye shadow, mascara and skin care preparations (Cosmetic Ingredient Review, 1989). The greatest use of morpholine was in mascara (32 products). The reported concentration ranges of morpholine in these products were < 0.1% (4 products), > 0.1-1% (17 products) and > 1-5% (17 products). Table 10 summarizes data submitted to the FDA in 1986 showing that the greatest use of morpholine was in eye make-up removers, at concentrations of > 0.1-1% and > 1-5% (Cosmetic Ingredient Review, 1989). These data show that the ocular region and the skin around are the areas directly exposed to cosmetic products containing morpholine. The potential also exists for morpholine-containing products to come in contact with the conjunctiva and cornea. Additionally, it must be emphasized that these morpholine-containing products may be applied several times daily over the course of several years. Due to lack of appropriate safety data, the Cosmetic Ingredient Review Expert Panel could not conclude that morpholine was safe for use in cosmetic products (Cosmetic Ingredient Review, 1989). Morpholine is listed in Annex II of the European Economic Community (EEC) Cosmetics Directive and therefore must not be used in cosmetic formulations (EEC, 1986). Investigations in 1988 and 1989 in the Federal Republic of Germany showed that no morpholine could be detected in toiletry articles (BUA, 1991). Data from a 1985 US Food and Drug Administration report given in Table 11 show that NMOR was found at concentrations between 48 and 1240 µg/kg in seven mascara products (Cosmetic Ingredient Review, 1989). It is not known whether the NMOR detected was formed in the cosmetics. Table 11 also shows the results of an analysis of various toiletry articles in the Federal Republic of Germany prior to the EEC Directive in 1986. NMOR was detected in 18% of the products (Spiegelhalder & Preussman, 1984). Table 10. Product formulation data for morpholinea Product Total no. of Total no. No. of product formulations category formulations containing within estimated in category ingredient concentration ranges > 0-1% > 1 > 1-5% Eye make-up 77 29 11 18 remover Eye, face, or body 1264 2 2 preparations other than eye make-up removers 1986 totals 1341 31 11 2 18 a US FDA (1986) 5.2.5 Rubber articles NMOR was found in commercial samples of rubber chemicals at concentrations of 60-3500 µg/kg by Spiegelhalder & Preussmann (1982), who noted that the occurrence of nitrosamines was directly related to the use of corresponding vulcanization accelerators. The nitrosamines could be leached out by water, buffer solutions or milk but could not be completely removed even after boiling or treating with acid or alkaline solutions (Spiegelhalder & Preussmann, 1982). Several rubber articles which come into contact with skin or food, in particular baby bottle teats and pacifiers (dummies), were assayed for NMOR; 10 µg/kg migrated from a silicone rubber pacifier (1 out of 11 different samples; detection level, 1 µg/kg) after incubation for 24 h at 40°C (Spiegelhalder & Preussmann, 1982). Sen et al. (1984) found NMOR in 2 out of 10 brands of nipples and in one pacifier at concentrations of between 0.1 µg/kg (detection level) and 86 µg/kg. The same authors found NMOR (5.7 µg/kg) in one plastic nipple shield, no NMOR being found in the other 41 samples of nipples and pacifiers (detection limit, 1 µg/kg) (Sen et al., 1985). Westin et al. (1987) tested 16 types of children's pacifiers and baby-bottle nipples on sale in Israel from nine different countries and found NMOR at levels of up to 2 µg/kg. Table 11. N-nitrosomorpholine (NMOR) in toiletry articles and cosmetics Concentration Productsa No. of No. (µg/kg) samples positive maximum average Shampoos 45 13 640 133 Colour toners 7 - - - Hair conditioners 16 - - - Foam baths 7 - - - Shower gels 9 4 380 145 Cream and oil baths 8 2 440 - Cosmetic bath additives 5 - - - Children's shampoos 5 1 230 - Children's bath and skin care products 8 6 360 80 Body lotions and rubs 6 - - - Face tonics, cleaners, 29 - - - and masks Mascarab 7 7 1240 306 a from Spiegelhalder & Preussmann (1984), with the exception of mascara b from CIR (1986) In a survey in Germany in 1990, no morpholine or NMOR was found in the rubber articles tested; these included balloons, baby dummies/teats, rubber gloves, condoms and rubber rings for bottling (BUA, 1991). 5.3 Occupational exposure during manufacture, formulation or use A USA National Occupational Hazard Survey, conducted by NIOSH, detected worker exposure to morpholine in 283 different industries (NRC, 1981). In 1970, 501 283 workers were potentially exposed to the actual product, 22% were exposed to a product known to contain morpholine, and 74% were exposed to a generic product suspected to contain morpholine. Data from the USA National Occupational Exposure Survey (NOES) in 1988 indicated that in a total of 30 industries and 8711 plants surveyed, 146 511 workers, including 44 839 women, were potentially exposed to morpholine in the workplace (NIOSH, 1988). Many countries recommend for morpholine an 8-h time-weighted average exposure limit of 70 mg/m3 (skin notation) and a 15-min short-term exposure limit (STEL) of 105 mg/m3 (ILO, 1991). 5.3.1 Exposure to morpholine Only a few studies have been reported concerning the exposure of workers to morpholine. An analysis in Ontario, Canada of condensed steam samples in four hospitals and one food processing plant using corrosion inhibitors in the steam-generating plants gave mean values for morpholine of 2.41 mg/litre in the hospitals (9 samples; range 2.1-2.9 mg/litre) and 1.1 mg/litre in the factory (9 samples; range 0.6-1.8 mg/litre) (Malaiyandi et al., 1979). Fajen et al. (1979) found morpholine levels of 230 and 42 µg/m3, respectively, in air samples from two out of four rubber industry factories; these two were a tyre factory and its chemical factory. Taft & Stroman (1979) described an investigation into workers exposed to a number of chemicals in the drying and bagging departments of a tyre and rubber company manufacturing the rubber accelerator, 4-morpholino-2-benzothiazolyl [(4-morphinyl-2-benzothiazole)] disulfide. This rubber accelerator is manu-factured by reacting morpholine with 2-mercaptobenzothiazole (MBT). With the exception of one personal sample showing 0.05 mg of morpholine/sample (0.4 ppm) at the level of detection, all other samples showed negative results. Occupational exposure to morpholine was measured in 15 factories of the chemical, plastic and rubber industries in Germany from 1980 to 1990, and in no case was the German workplace exposure limit of 70 mg/m3 reached. Of 35 measurements, 90% were below 0.26 mg/m3 (BUA, 1991). Katosova et al. (1991) reported average levels of 0.54 to 0.93 mg morpholine/m3 with maximum concentrations of 0.73 to 2.14 mg/m3 in a morpholine production factory in the former-USSR. 5.3.2 Exposure to N-nitrosomorpholine Occupational exposure to NMOR has been found in the rubber industry. Table 12 gives a summary of the data published. Fajen et al. (1979) found NMOR in air samples from a tyre chemical factory and an aircraft tyre factory. In the chemical factory, NMOR was also found as an impurity in morpholine (0.8 mg/kg) and in bismorpholine carbamylsulfenamide (BMCS), a vulcanisation accelerator (0.4 to 0.7 mg/kg), as well as in wastewater (0.003 mg/kg), utility steam condensate (0.002 mg/kg), and dirt scrapings on a staircase (730 mg/kg). Outside the chemical plant, a soil sample contained 4.4 mg/kg (Fajen et al., 1979). It is possible that the NMOR in these samples was formed by the transnitrosation from N-nitrosodiphenylamine, also produced in the tyre chemical factory, together with morpholine present in the steam condensate (BUA, 1991). A survey was carried out by NIOSH and a tyre manufacturing company in 1979 into the levels of NMOR in four different work areas in the factory as well as personal exposure levels (Ringenburg & Fajen, 1980; London & Lee, 1987). Personal breathing-zone air samples ranged from 0.6 to 1.8 µg/m3 (mean 0.8 µg/m3), and workplace levels from 0.8 to 3.7 µg/m3. In a survey at another tyre manufacturing company during the same year, nitrosamine levels were highest (1.62 µg/m3) during the extrusion process of racing tyre components (McGlothlin, 1980; McGlothlin & Wilcox, 1984). Exposure to NMOR in rubber press operator fumes was investigated by NIOSH in another company. The highest personal exposure to NMOR was 0.063 µg/m3, and the highest area sample 0.038 µg/m3. In a factory producing rubber parts for automobile interiors, the highest level of NMOR (19 µg/m3) was found in the process sample taken directly above one of the extruder ovens. Other personal and process levels were in the range 0.1 to 1.4 µg NMOR/m3. Between 1980 and 1990, 775 samples of workplace air from 124 factories in Germany involved in the production and fabrication of rubber articles were analysed for NMOR (BUA, 1991). Of the samples, 71% showed concentrations less than the guidance value of 1 µg/m3 (BUA, 1991). According to Spiegelhalder (1983) and Schuster et al. (1990), higher concentrations of NMOR are to be found in work areas where higher temperatures are required for fabrication/vulcanization. High levels of NMOR from storage areas probably result from continued emission of volatile NMOR. NMOR was not detected in the environment of a metal factory using metal-working fluids (Fadlallah et al., 1990). Table 12. Occupational exposure to NMORa Production area Country Year No. of monitoring Type of Concentration Reference places monitoring (µg/m3)b Tyre chemical factory USA 1978 10 area 0.07-5.1 Fajen et al. (1979) Tyre manufacturer USA 1978 20 area 0.6-27 Rounbehler & Fajen 12 area 0.08-8.5 (1983) 7 area 0.02-3.9 6 process 0.41-2.9 6 area < 0.01-0.60 7 process < 0.1-22.0 7 area < 0.002-250 8 process 0.1-25 Tyre manufacturer USA 1979/ 13 area 0.1-1.62 McGlothlin (1980), 1980 McGlothlin & Wilcox (1984) Tyre manufacturer USA 1979/ 4 area 0.85-3.7 Ringenburg & Fajen (1980); 1980 6 personal 0.6-1.8 London & Lee (1987) Industrial rubber articles USA 1978 4 area 0 Fajen et al. (1979) Industrial rubber articles USA 1980/ 11 area < 0.005-0.0376 Hollett et al. (1982) 1981 7 personal < 0.0096-0.0629 Rubber articles for USA 1982 4 area 0.8-19 Lee (1982) car outfitting 13 personal 0.4-1.2 Rubber industry Germany 1979/ 20 monitoring area and 0.1-17 Spiegelhalder & 1981 points in 17 personal Preussmann (1982) factories Table 12 (cont'd) Production area Country Year No. of monitoring Type of Concentration Reference places monitoring (µg/m3)b Rubber industry Germany 1987 545 personalc < 2.5 (73%), TRGS (1989) > 2.5 (27%) max. 41 Chemical industry Germany 1987 22 not given < 1 (91%)d TRGS (1989) Leather industry Germany 1987 50 not given < 1 (100%) TRGS (1989) Foundries Germany not given 658 not given < 1 (95%), TRGS (1989) > 1 (5%) max. 2.1 a adapted from BUA (1991) b the percentage of samples which had this given concentration is given in parentheses c sum of all measured N-nitrosamines d in 82% below the detection level (0.2 µg/m3) 6. KINETICS AND METABOLISM IN LABORATORY ANIMALS AND HUMANS 6.1 Absorption Toxicity experiments on rodents have shown that morpholine is absorbed after oral, dermal and inhalation exposure (see Table 13). 6.2 Distribution Tanaka et al. (1978) determined the distribution of [14C]-labelled morpholine in male Wistar rats (3 animals/group, 250-300 g) after oral (200 mg/kg) and intravenous injections (150 mg/kg). The radioactivity was determined in the dried, powdered organs. Large amounts were only found in muscle and intestine. In rats sacrificed 2 h after oral administration of morpholine-HCl, 29% of the radioactivity was found in the intestine and 26% in the muscle. Similarly, 2 h after intravenous injections, 19 and 27% of the dose was found in the intestine and muscle, respectively. Female New Zealand rabbits (number not given) were exposed to morpholine (905 mg/m3) for 5 h by nose-only inhalation (Tombropoulos, 1979). At the end of the exposure, the animals were sacrificed and the tissue and body fluids analysed. Concentrations of morpholine were highest in urine (324 mg/litre) and kidney (118 mg/kg), the other tissues having concentrations below 40 mg/kg. Van Stee et al. (1981) injected six male New Zealand rabbits intravenously with 5 mmol [14C]-labelled morpholine/kg body weight (435 mg/kg). The distribution of radioactivity after 30 min showed the highest concentrations in the renal medulla (36 mmol/kg) and cortex (15.4 mmol/kg), followed by lung (5.1 mmol/kg), liver (4.7 mmol/kg) and blood (2.3 mmol/litre). Morpholine was not bound to serum proteins. 6.3 Metabolic transformation Morpholine is eliminated mainly in a non-metabolized form in the urine of the rat, mouse, hamster and rabbit (Griffiths, 1968; Tanaka et al., 1978; Van Stee et al., 1981; Sohn et al., 1982b). However, Sohn et al. (1982b) reported that morpholine is metabolized by N-methylation followed by N-oxidation in the guinea-pig. After an intraperitoneal injection of 125 mg/kg [14C]-labelled morpholine in guinea-pigs, 20% of the radioactivity was found in the urine as N-methylmorpholine- N-oxide. However, the morpholine ring can be cleaved in mammalian systems. In several studies on the metabolism of morpholine derivatives in the rat, ring cleavage products have been noted (Tatsumi et al., 1975; Hecht & Young, 1981; Kamimura et al., 1987). Table 13. Single exposure toxicity data for morpholinea Species No./sex Dosage Results Cause of death/symptoms Reference Oral Rat 5 1.05 g/kg body weight LD50 n.g. Smyth et al. (1954) Rat 57 1.6 g/kg body weightb LD50 gastrointestinal haemorrhage Shea (1939) Rat 5 m + 5 f 1.9 g/kg body weight LD50 dyspnoea, haemorrhagic BASF (1967) enteritis Rat 7 m 1.0 g/kg body weight; pH 7 no deaths n.g. Börzsönyi et al. (1981) Guinea-pig 33 0.9 g/kg body weightb LD50 gastrointestinal Shea (1939) haemorrhage, diarrhoea Intraperitoneal Rat (Wistar) 4 m 0.4 g/kg body weight all died n.g. Stewart & Farber (1973) Rat (Wistar) 4 m 0.1 g/kg body weight lethal n.g. Stewart & Farber (1973) for 1/4 Mouse 5 m + 5 f 0.4 g/kg body weight LD50 irritation around BASF (1967) injection area, dyspnoea Inhalation Rat 5 m + 5 f 18.1 g/m3; 6 h lethal haemorrhage of nose, mouth Hazleton (1981) for 9/10 and eyes; spasms; tremors Rat 6 saturated atmosphere;c all died spasms; caustic burns BASF (1967) 5´ h on nose and extremities Table 13 (cont'd) Species No./sex Dosage Results Cause of death/symptoms Reference Inhalation (contd) Rat n.g./m 8.2 g/m3; LC50 n.g. Lam & Van Stee (1978) Rat n.g./f 7.8 g/m3; LC50 n.g. Lam & Van Stee (1978) Rat n.g. 65.2 g/m3; 8 h lethal irritation of nose, Shea (1939) eyes; lung haemorrhage Rat n.g. 43.4 g/m3; 8 h lethal n.g. Shea (1939) Mouse n.g./f 6.9 g/m3; LC50 n.g. Lam & Van Stee (1978) Mouse n.g./m 5.2 g/m3; LC50 n.g. Lam & Van Stee (1978) Mouse n.g. 4.9 g/m3; LC50 n.g. Zaeva et al. (1968) Dermal Rabbit (New n.g. 0.5 ml/kg body weight LC50 n.g. Smyth et al. (1954) Zealand) a adapted from BUA (1991); n.g. = no details given b morpholine diluted with 4 parts water; deaths within a week c inhalation of a saturated atmosphere at 20°C formed by bubbling air through a 5-cm layer of morpholine In the presence of nitrite, morpholine can be converted to NMOR (see section 4.3). NMOR was found in the stomachs of rats that had been fed on diets containing morpholine and nitrite (Sander et al., 1968; Inui et al., 1979). Immunostimulation of rats by intraperitoneal treatment with E. coli lipopolysaccharide (LPS; 1 mg/kg) led to a large increase in urinary nitrate and urinary metabolites of NMOR when morpholine (80 µmol/kg) and L-arginine (400 µmol/kg) were injected intraperitoneally. The replacement of LPS with nitrate (330 µmol/kg intraperitoneal) did not increase urinary metabolites of NMOR (Leaf et al., 1991). This result is consistent with endogenous nitrosation of morpholine by nitrogen oxide (NO) from oxidation of the guanido group of arginine by induced NO synthase (Hibbs, 1992). Hecht & Morrison (1984) developed a method to monitor the in vivo formation of NMOR by measuring N-nitroso (2-hydroxyethyl)glycine, its major urinary metabolite. The formation of NMOR was measured in F-344 rats over wide range of doses of morpholine (38.3-0.92 µmol) and sodium nitrite (191-4.8 µmol). According to estimates by the authors, 0.5 to 12% of the morpholine, depending on the dose, was nitrosated. In vitro nitrosation of morpholine has been reported. NMOR was formed when morpholine was added to human saliva (Tannenbaum et al., 1978). Additionally, a new type of metabolite N-cyanomorpholine was identified in human saliva (Wishnok & Tannenbaum, 1976). 6.4 Elimination and excretion 6.4.1 Expired air Elimination of 14C from labelled morpholine (intraperitoneal injection) through expired air is minimal. In rats, experiments have shown that only about 0.5% of the dose of radioactively labelled morpholine is exhaled as 14CO2 (Sohn et al., 1982b). In rabbits 0.0008% of the administered dose was 14CO2 (Van Stee et al., 1981). 6.4.2 Urine Elimination studies on male Wistar rats (200-350 g) were carried out by administering morpholine-HCl (500 mg/kg) or [14C]-labelled morpholine-HCl (200 mg/kg) orally and morpholine-HCl (250 mg/kg) intravenously. In all cases, over 85% of the dose was excreted in urine within 24 h. A further portion, up to 5%, was excreted during the next three days. [14C]-morpholine palmitate was eliminated slightly more slowly, but the urinary excretion within 3 days following oral administration amounted to 90% of the dose (Tanaka et al., 1978). Of the radioactive morpholine administered to rats, 62-77.5% was excreted in the urine after 24 h (Griffiths, 1968; Ohnishi, 1984). Following intraperitoneal administration to rats, urinary excretion within 24 h was 87.8% of the dose (Maller & Heidelberger, 1957). In the dog, 70-80% of the radioactive morpholine was excreted in the urine (Rhodes & Case, 1977). The time-course of urinary excretion of 14C by Sprague-Dawley rats, Syrian golden hamsters, and strain II guinea-pigs treated with [14C]-morpholine was compared by Sohn et al. (1982b). Although in all three species over 80% was excreted in 3 days, the rate of urinary excretion within the first 6 h was greatest in the hamster and least in the guinea-pig. Van Stee et al. (1981) infused rabbits intravenously with [14C]-morpholine (5 mmol/kg) which had been neutralized with HCl. After 4 h, 18.5% of the dose was excreted in the urine. When the pH of the urine was lowered from 7.8-7.9 to 7.1-7.2 by administration of ammonium chloride (10 g/litre) in drinking-water prior to the injection, the urinary excretion more than doubled (to 43%). These data suggest that the urinary excretion of morpholine is enhanced by its neutralization with acid. 6.4.3 Faeces Rats dosed orally or intravenously with morpholine hydrochloride excreted not more than 1.7% of the dose in the faeces (Griffiths, 1968; Tanaka et al., 1978). However, when dosed orally with morpholine palmitate (Tanaka et al., 1978, Ohnishi, 1984), up to 7% was excreted in faeces. 6.5 Retention and turnover Plasma concentration-time curves of 14C after intraperitoneal injections of [14C]-morpholine (125 mg/kg in 0.9% NaCl) in Sprague- Dawley rats, Syrian golden hamsters, and strain II guinea-pigs declined biexponentially. Whereas rates of first phase of elimination from plasma in rats and hamsters were similar (half-lives of 115 and 120 min, respectively), the half-life in guinea-pigs was significantly longer (300 min) (Sohn et al., 1982b). 7. EFFECTS ON LABORATORY MAMMALS AND IN VITRO TEST SYSTEMS 7.1 Single exposure Table 13 summarizes the toxicity data on single exposure to morpholine. 7.1.1 Oral Oral administration of morpholine to rats resulted in LD50 values of 1-2 g/kg body weight (Shea, 1939; Smyth et al., 1954; BASF, 1967). Gastrointestinal and nasal haemorrhage were reported. In contrast, when morpholine was administered to seven male rats at a neutral pH, no deaths occurred with concentrations of 1 g/kg body weight (Börzsönyi et al., 1981). A study on guinea-pigs resulted in a LD50 of 0.9 g morpholine per kg body weight. Gastrointestinal and nasal haemorrhage were reported (Shea, 1939). 7.1.2 Inhalation There have been reports of inhalation studies with morpholine on rats (Shea, 1939; BASF, 1967; International Labour Office, 1972; Lam & Van Stee, 1978; Hazleton, 1981) and mice (Zaeva et al., 1968; Lam & Van Stee, 1978). Exposure to morpholine at vapour saturation concentrations resulted in almost 100% lethality after 5.5 h (BASF, 1967). It had irritating and corrosive properties. In studies with lower concentrations, Lam & Van Stee (1978) obtained LC50 values of 7.8 and 8.2 g/m3 for female and male rats, respectively, whereas other authors reported no deaths at three times this concentration (see Table 13). Reported LC50 values for mice are consistently in the range of 5-7 g/m3 (see Table 13). 7.1.3 Dermal Smyth et al. (1954) noted necrosis on the clipped skin of albino rabbits within 24 h of application of undiluted morpholine. Mortality within 14 days in New Zealand rabbits after penetration of morpholine into the skin gave an LD50 of 0.5 ml/kg body weight. Other reports are discussed in section 7.4.2. 7.1.4 Intraperitoneal When morpholine was administered intraperitoneally to rats (Stewart & Farber, 1973) and mice (BASF, 1967), the LD50 was in the range 0.1-0.4 g/kg body weight for rats and 0.4 g/kg body weight for mice (see Table 13). 7.2 Short-term exposure As with single-exposure, the effects of morpholine after short- term exposure depend on the method of exposure. The available data on short-term exposure are summarized in Table 14. 7.2.1 Oral Rats and guinea-pigs were fed morpholine at concentrations of 0.16-0.8 g/kg body weight and 0.09-0.45 g/kg body weight, respectively, by gavage for 30 days (Shea, 1939). At concentrations of half of the LD50, nearly all the animals died within 30 days, the principal symptoms being severe damage to the secreting tubules of the kidney, fatty degeneration of the liver and necrosis of the stomach glandular epithelium. Fatty degeneration (lipidosis) of the liver in rats was noted after feeding morpholine (0.5 g/kg body weight) daily for 56 days (Sander & Bürkle, 1969). Shibata et al. (1987a) carried out a 13-week toxicity study in B6C3F1 mice using morpholine as the fatty acid salt, morpholine oleic acid salt (MOAS), at dosage levels of 0%, 0.15%, 0.3%, 0.6%, 1.25% and 2.5% MOAS in the drinking-water. At the highest MOAS level, body weight gains were slightly reduced. Histopathological analysis showed cloudy swelling of the proximal tubules, but no other alterations were observed in the organs of either sex. Urinalysis showed increases in both specific gravity and plasma urea nitrogen in some dosage groups, suggesting a possible malfunctioning of the kidney (see Table 14). 7.2.2 Inhalation In rats that died after 5 days repeated exposure to 65.2 g/m3, lung haemorrhage, severe damage to the secreting tubules of the kidney, and fatty degeneration of the liver were observed (Shea, 1939). Table 14. Short-term exposure to morpholinea Species No./sex Dosage/concentration/ Mortality Pathological, histopathological Reference length of exposure or biochemical changes Oral Rat 20 0.16 g/kg body weight per 8/20 beginning necrosis of liver, kidney Shea (1939) day; 30 days; in 2 ml H2O and stomach mucous membrane (gavage) 20 0.32 g/kg body weight per 8/20 necrosis of liver, kidney, stomach day; 30 days; in 2 ml H2O (gavage) 20 0.8 g/kg body weight per 19/20 weight loss, lethargy, severe necrosis day; 30 days; in 2 ml H2O of liver, kidney, stomach (gavage) Rat 7 f 0.5 g/kg body weight per sacrifice after 270 days, moderate Sander & Bürkle (Sprague- day; 56 days liver adipose degeneration (1969) Dawley) Mouse 10 m + 10 f 0.15 and 0.3% MOAS; 91 days no significant changes Shibata et al. (B6C3F1) (0.07 or 0.14 g morpholine/ (1987a) kg body weight per day) 10 m + 10 f 0.6% MOAS; 91 days m: increase in specific gravity of (ca. 0.2 g morpholine/kg urine; f: increase in blood urea body weight) per day 10 m + 10 f 1.25% MOAS; 91 days increase in specific gravity of (ca. 0.4 g morpholine/kg urine and blood urea body weight per day) Table 14 (cont'd) Species No./sex Dosage/concentration/ Mortality Pathological, histopathological Reference length of exposure or biochemical changes 10 m + 10 f 2.5% MOAS; 91 days reduced weight gain; increase in specific Shibata et al. (ca. 0.7 g morpholine/kg gravity of urine and blood urea; (1987a) body weight per day) increased relative kidney weight with swelling of proximal tubules Guinea-pig 20 0.09 g/kg body weight 3/20 slight alterations in liver, kidney Shea (1939) per day; 30 days (syringe) 20 0.18 g/kg body weight 12/20 necrosis of liver, kidney, stomach per day; 30 days (syringe) 20 0.45 g/kg body weight 16/20 severe degeneration of liver, kidney, per day; 30 days (syringe) stomach Inhalation Rat n.g. 7.2 g/m3; 4 h/day; 4 days n.g. increased residual volume and Takezawa & total lung capacity Lam (1978) Rat n.g. 65.2 g/m3; 34 h over 5 days some deathsb necrosis of liver and kidney tubules; Shea (1939) lung irritation Rat 6-8 m 0.08 g/m3; 4 h/day; 8 days no deaths hypersecretion of thyroid gland, Grodeckaja higher accumulation of 131I in the & Karamzina thyroid gland (1973) Rat 5 m + 5 f 0.36 g/m3; 6 h/day; 9 days 0/10 red stains around nose and mouth; Hazleton weight loss in females (1981) 5 m + 5 f 1.81 g/m3; 6 h/day; 9 days 2/10 irritation to nose and eyes; weight loss; Hazleton decrease in spleen/brain weight ratios (1981) Table 14 (cont'd) Species No./sex Dosage/concentration/ Mortality Pathological, histopathological Reference length of exposure or biochemical changes 5 m + 5 f 3.62 and 18.1 g/m3; 10/10 bleeding from eyes, nose and Hazleton 6 h/day; 9 days mouth (1981) Rat n.g. 1.63 g/m3; 4 h/day; n.g. reduced weight gain; increased residual Takezawa & 5 days/week; 30 days volume and total lung capacity Lam (1978) Rat 20 m + 20 f 0.09 g/m3; 6 h/day; no significant differences in body Conaway et al. (Sprague- 5 days/week; 13 weeks weight, clinical chemistry, haematology (1984b) Dawley) or organ weight data; no nasal lesions 20 m + 20 f 0.36 g/m3; 6 h/day; in 2/20 females focal necrosis in 5 days/week; 13 weeks nasal cavity 20 m + 20 f 0.9 g/m3; 6 h/day; lesions of nose and mouth; after 7 5 days/week; 13 weeks weeks in 8 animals focal metaplasia and necrosis in nasal turbinates; after 13 weeks, increased incidence and severity; pneumonia Rabbit 4 m 0.9 g/m3; 6 h/day; increased hydrolytic enzyme content Tombropoulos 5 days/week; 33 days in alveolar macrophages et al. (1983) a adapted from BUA (1991); b.w. = body weight; n.g. = not given b exact numbers not clear Rats inhaling morpholine at 3.62 or 18.1 g/m3 for 9 days, 6 h per day, died within the exposure period (Hazleton, 1981). At lower concentrations (1.81 g/m3), weight loss and irritation to nose and eyes, as well as two deaths, were reported. The report concluded that the maximal tolerated dose for rats is about or just below 0.3 g/m3. Increased thyroid activity, shown as increased uptake of injected 131I, was observed in male rats after exposure to 0.08 g morpholine/m3, 4 h/day, for 4 days (Grodeckaja & Karamzina, 1973). Takezawa & Lam (1978) reported an increase in lung weight, residual volume and total lung capacity in rats exposed to morpholine (7.2 g/m3, 4 h/day for 4 days or 1.63 g/m3 for 30 days). Tombropoulos et al. (1983) examined the induction of lysosomal enzymes by morpholine in rabbits. Two acid hydrolases, alpha-mannosidase and acid phosphatase, were induced in the lung alveolar macrophages during the course of inhalation exposure (905 mg/m3, 250 ppm, 6 h/day, 5 days/week for a total of 33 exposures). The induction was also observed when macrophages were cultured in the presence of morpholine. Conaway et al. (1984b) exposed groups of 40 rats to morpholine (0, 0.09, 0.36 and 0.9 g/m3) for 7 and 13 weeks. Shallow, rapid breathing was noted in all groups except the controls. Lesions of the nasal septum, anterior cavities, nasoturbinates and maxilloturbinates were observed in the 0.36 and 0.9 g/m3 groups but not in the lowest exposure group. Lung sections of all rats killed after 7 weeks contained early lesions of chronic murine pneumonia. In the upper dosage group, these lesions had developed in severity by 13 weeks. There were no apparent treatment-related effects in any of the haematology, clinical chemistry or urinalysis data at weeks 7 or 13. 7.2.3 Dermal Shea (1939) investigated the effects of single and repeated dermal application of morpholine on rabbits and guinea-pigs. He found that whereas unneutralized, undiluted morpholine caused 100% lethality and even the diluted compound caused mortality and severe necrotic burns and inflammation, application of undiluted morpholine neutralized to pH 7 with sulfuric acid caused neither gross nor microscopic pathology of the skin with the exception that the dermis was thickened at the site of application. Undiluted morpholine applied for 5-15 min to rabbit skin led to severe necrosis (BASF, 1967). Data on short-term dermal exposure to morpholine are also discussed in section 7.4.2. 7.3 Long-term exposure Table 15 summarizes the data on long-term exposure to morpholine. 7.3.1 Oral Mice (10 males and 10 females/group) were given 0%, 0.25% or 1.0% MOAS in their drinking-water for 96 weeks and then given normal tap water for a further 8 weeks (Shibata et al., 1987b). During the study, the physical appearance and general behaviour did not appear to be affected by treatment. Decreased body weight gain was noted at 1% MOAS (both sexes) and at 0.25% MOAS (females). Gross pathological and extensive biochemical examinations did not reveal treatment-related effects. The incidence of hyperplasia in forestomach epithelium of males in the 1% group was statistically higher than in the controls, but otherwise no significant increase in the incidence of non- neoplastic and neoplastic lesions could be found. 7.3.2 Inhalation Migukina (1973) reported increased nervous system activity and increases in haemoglobin and peripheral red blood cell counts in rats and guinea-pigs exposed to morpholine (0.008 and 0.07 g/m3) for 4 months. An increase in the chromosomal aberrations of the bone marrow cells was also noted (see section 7.6). This study was deficient with respect to the description of study methods. Harbison et al. (1989) carried out an extensive long-term exposure inhalation study. Groups of 70 rats of each sex were exposed to morpholine (0, 0.036, 0.181, 0.543 g/m3) 6 h per day, 5 days per week, for 104 weeks, with an interim sacrifice at week 53. Levels of nitrates and nitrites in the drinking-water were reported to be < 0.1 mg/litre and 0.01 mg/litre, respectively. Survival, body weight gain, organ weight and haematology and clinical chemistry data were normal in exposed groups, compared to the controls. In-life clinical examinations revealed increased incidences of inflammation of the cornea, inflammation and squamous metaplasia of the turbinate epithelium, and necrosis of the turbinate bones in the nasal cavity of both male and female rats. No increase in the incidence of neoplasms was found. Only tissues from the respiratory tract and eyes were examined histologically in the case of the mid- and low-dose groups. 7.3.3 Dermal No data are available on long-term dermal exposure to morpholine. Table 15. Long-term exposure to morpholinea Species No./sex Dosage/concentration, Effect Reference length of exposure Oral Mouse 50 m 0.25% MOAS; 672 days (ca. 0.05-0.14 g no significant changes Shibata et al. (B6C3F1)b morpholine/kg body weight per day) (1987b) 50 f 0.25% MOAS; 672 days (ca. 0.07-0.17 g decreased body weight gain morpholine/kg body weight per day) 50 m 1% MOAS; 672 days (ca. 0.28-0.5 g decreased body weight gain; increase in blood morpholine/kg body weight per day) urea nitrogen; hyperplasia in forestomach epithelium 50 f 1% MOAS; 672 days (ca. 0.21-0.57 g decreased body weight gain morpholine/kg body weight per day) Inhalation Rat 84 m 0.008 g/m3; 34 h within 5 days; reversible changes in haemogram, kidney, Migukina (1973) 16 weeks liver, lung, spleen, myocardium 84 m 0.07 g/m3; 4 h/day; changes in haemogram, liver, kidney 5 days/week; 16 weeks lung, spleen, myocardium Rat 20 1.09 g/m3; 6 h/day; no significant increase in spinal cord Savolainen & 5 days/week; 15 weeks axonal succinate dehydrogenase activity; no Rosenberg (1983) significant alteration of enzyme activity in muscle; morpholine concentration in brain increased with length of exposure Table 15 (cont'd) Species No./sex Dosage/concentration, Effect Reference length of exposure Rat 70 m + 0.036 and 0.18 g/m3; 6 h/day; increased incidence of irritation around Harbison et al. (Sprague- 70 f 5 days/week; 104 weeksc eyes and nose (1989) Dawley) 70 m + 0.54 g/m3; 6 h/day; local necrosis around eyes and nose; 70 f 5 days/week; 104 weeksc kerativitis Guinea-pig 24 0.008 g/m3; 4 h/day; swollen lymph nodes of the spleen Migukina (1973) 5 days/week; 16 weeks 24 0.07 g/m3; 4 h/day; swollen alveoli; atrophy of lymph vessels in 5 days/week; 16 weeks lung and spleen; increase in haemoglobin and erythrocyte number, decrease in leucocytes a adapted from BUA (1991); b.w. = body weight b MOAS: morpholine administered as oleic acid salt in drinking-water; in brackets, the daily intake of morpholine calculated from MOAS intake c 10 m + 10 f killed at 53 weeks 7.4 Skin and eye irritation; sensitization 7.4.1. Eye irritation Eye injury in rabbits was tested by Smyth et al. (1954), who reported severe eye burns with 0.5 ml of a 1% solution. BASF (1967) reported that 1 drop of undiluted morpholine in rabbit eyes, repeated once after 5 min, caused oedema, opacity, staphyloma and corrosion of the eye mucous membranes within 24 h. A solution of morpholine (0.02 mol/litre) neutralized with HCl had no injurious effect on the eyes of rabbits when applied continuously for 10 min after removal of the corneal epithelium to facilitate penetration. Similarly, the irritative reaction of 10-20% aqueous morpholine was reduced on neutralization (Grant, 1974). In-life clinical examinations in rats exposed to up to 0.54 g/m3 (150 ppm) morpholine revealed increased incidences in inflammation of the cornea at week 103 of the study (Harbison et al., 1989). Findings included keratitis, oedema, abrasion, scarring, and ulceration with or without neovascularization and corneal epithelial hyperplasia. A high incidence of retinal degeneration was observed, primarily in female animals, which was probably an age-related light- induced retinal degeneration. Albino rabbits, three of each sex, were treated with a mascara composite containing 1% morpholine; 0.1 ml of the cosmetic was instilled into one eye of each rabbit daily for 14 days. Before the application each day, the eye was evaluated for ocular irritation. A slight redness of the conjunctiva was noted throughout the duration of the study but this cleared within 24 h of the last treatment. A sodium fluorescein dye test performed at the conclusion of the study indicated no abnormalities of the cornea or its iris membranes (Cosmetic Ingredient Review, 1989). 7.4.2 Skin irritation In rabbits treated with aqueous solutions of 2, 20, 40 and 60% morpholine, the skin reactions were evaluated after 0.5, 24, 48 and 72 h (Lodén et al., 1985). A 2% solution of morpholine caused skin irritation after 72 h, whereas 40% and 60% solutions immediately caused reddening of the skin. Wang & Suskind (1988) measured the irritant potential of morpholine by applying 0.1 g mixture (0.1, 0.5, 2, 5 and 10% morpholine in petrolatum) to guinea-pig skin for 24 h. Observations were made 1, 24 and 48 h after removal of the test materials, and no noticeable effects were found. A mascara composite containing 1% morpholine was applied to normal and abraded skin of six albino rabbits (Cosmetic Ingredient Review, 1989). At the end of the 14-day treatment period, no dermal toxicity or irritation was observed. 7.4.3 Sensitization Sensitization studies (modified Buehler) on guinea-pig skin using 2% morpholine in petrolatum gave negative results (Wang & Suskind, 1988). In an in vitro study into the biochemical causes of sensitization, it was found that morpholine as a hapten did not react with the amino acids glycine, lysine and cystine, as did related compounds which showed sensitizing reactions (Wang & Tabor, 1988). 7.5 Reproductive toxicity, embryotoxicity and teratogenicity No adequate studies on reproductive toxicity, embryotoxicity or teratogenicity have been reported. 7.6 Mutagenicity and related end-points 7.6.1 Mutagenicity of morpholine Table 16 summarizes the short-term mutagenicity tests on morpholine. 7.6.1.1 Bacteria No mutagenic response was observed in plate tests with strains of Salmonella typhimurium, either with or without metabolic activator, exposed to morpholine at up to 10 µl/plate (approximately 10 mg/plate) (Texaco, 1979a; Haworth et al., 1983), whereas a 99.8% purity sample did induce weak mutagenic responses in S. typhimurium TA100 and Escherichia coli WP2 uvr A at the unusually high dose level of 50 mg/plate (Glatt & Oesch, 1981). The activity in strain TA100 did not require S9 mix and is, therefore, unlikely to have been due to 0.2% contamination by NMOR (see below). In mouse peritoneal cavity host-mediated assays with S. typhimurium TA1530 and TA1930, no increase in the proportion of mutants was observed following the oral administration of morpholine (Braun et al., 1977; Edwards et al., 1979). These groups served as controls in a study of nitrosation (see below). 7.6.1.2 Yeast No gene conversion was induced in Saccharomyces cerevisiae D4 by morpholine concentrations up to 10 µg/litre per plate. Toxicity was observed at the highest concentration (Texaco, 1979a). Table 16. Short-term in vitro microbial mutagenicity assays with morpholinea Test organisms Strain Analyzed Metabolic Dosage range Result with/ Reference purity (%) activityb without S9-mix Salmonella typhimurium TA98/100/1535/1537 not given RA 0.109-10.9 mg/plate -/- Haworth et al. (1983) S. typhimurium TA98/100/1535/1537 not given RA 0.005-10 µl/plate -/- Texaco (1979a) 1538c Saccharomyces D4 not given RA 0.005-10 µl/platec -/- Texaco (1979a) cerevisiae S. typhimurium TA98/1535/1537 99.8 RA 0.0158-50 mg/plate -/- Glatt & Oesch (1981) S. typhimurium TA100 99.8 RA 0.0158-50 mg/plate (+)/(+)d Glatt & Oesch (1981) Escherichia coli WP2 uvrA 99.8 RA 0.0158-50 mg/plate (+)d/- Glatt & Oesch (1981) S. typhimurium TA1950 99 HM1 1450-2900 µmol/kg - Braun et al. (1977) S. typhimurium TA1530 not given HM2 4 mg/kg body weight - Edwards et al. (1979) a adapted from BUA (1991) b RA = Arochlor-induced rat liver-S9; HM1 = Host-mediated assay NMRI-mice; HM2 = Host-mediated assay CD-1 mice c toxic at 10 µl/plate for strain Salmonella typhimurium TA1538 and Saccharomyces cerevisiae D4 d (+) = positive only at the 50 mg/plate dose 7.6.1.3 Mammalian cells in vitro When tested over the range 0.625-1.25 µl/ml (approximately 0.625-1.25 mg/ml) morpholine induced small increases in the fraction of tk mutants in mouse lymphoma L5178Y cells. No exogenous metabolic activation system was required for this weak activity (Texaco, 1979b; Conaway et al., 1982a,b). Morpholine induced no DNA-repair in the primary cultures of rat hepatocytes (0.1-100 µg/ml) (Conaway et al., 1984a). Morpholine induced small increases in the frequency of SCEs in Chinese hamster ovary (CHO) cells. No exogenous metabolic activation system was required for this activity, which was observed at concentrations of 50 and 100 nl/ml (approximately 50 and 100 µg/ml) in the absence of S9 mix (Litton Bionetics, 1980). Morpholine increased the numbers of type III foci in the Balb/C3T3 cell transformation assay tested at different dosages (0.001-0.3 µl/ml), corresponding to 78-52% survival in the cytotoxicity test (Texaco, 1979b, Litton Bionetics, 1979a,b; Conaway et al., 1982a,b). In another study of in vitro transformation of Balb/3T3 cells with and without metabolic activation, the morpholine in the culture medium was neutralized before testing (Litton Bionetics, 1982). No significant increases were induced in transformed foci over the tested concentration ranges (0.015 to 1.400 µl/ml in the non-activation assay; 0.0175-0.7 µl/ml in the activation assay). Morpholine was therefore considered as being inactive in this test. 7.6.1.4 In vivo studies in mammals Inui et al. (1979) administered a dosage of 500 mg morpholine per kg body weight to female Syrian hamsters on the 11th or 12th day of pregnancy. The embryos were removed 24 h later and embryo cells examined. For detection of induced mutations, embryo cells were cultured in normal medium for 72 h and then transferred to a medium containing 8-azaguanine (10 or 20 mg per litre) or ouabain (1 mM). No chromosomal aberrations, micro-nucleus formation, or 8-azaguanine- or ouabain-resistant mutations were found. Migukina (1973) reported an increase in the number of chromosomal aberrations, particularly "fragmentations", in bone marrow cells of rats and guinea-pigs exposed for 4 months to 8 or 70 mg morpholine/m3 (see also section 7.3.2). However, there were deficiencies in the study report (BUA, 1991). 7.6.2 Mutagenicity of morpholine in the presence of nitrite and nitrate Although morpholine has given negative responses in a number of mutagenicity assays, there is concern for its ability to be nitrosated readily to form NMOR (see section 4.3). Two mouse peritoneal cavity host-mediated assays with S. typhimurium have been performed. In one, with strain TA1530, different morpholine doses were administered orally to mice simultaneously with a standard sodium nitrite dose of 120 mg/kg. The mixtures were adjusted to pH 3.4. Significant increases in the mutant fraction were observed with morpholine doses of 4-40 mg/kg, the full range tested (Edwards et al., 1979). In the other assay, with strain TA1950, equimolar mixtures of morpholine and sodium nitrite (1450 or 2900 µmol/kg, approximately 125 or 250 mg/kg) were administered orally to mice (pH 7.0). Significant increases in the mutant fraction were observed at both dose levels. When the nitrite was administered to the mice 10 min before the morpholine treatment, no mutagenic response was induced (Braun et al., 1977). Mutations were found in S. typhimurium TA1535 used to test the urine of OF1 mice after morpholine (250 mg/kg body weight) had been administered in the presence of nitrate (2000 mg/kg). Lower levels of nitrate (333 and 666 mg/kg) caused no mutations (Perez et al., 1990). 7.6.3 Mutagenicity of N-nitrosomorpholine NMOR is mutagenic to S. typhimurium TA100 in the presence of S9 mix at dose levels above 2000 µg/plate. In yeast, it induced forward mutation and aneuploidy, but not mitotic recombination. In cultured mammalian cells, conflicting results were obtained in unscheduled DNA synthesis (UDS) assays in fibroblasts, while weakly positive results were reported for sister-chromatid exchange (SCE) in CHO cells, for tk locus mutation in mouse lymphoma L5178Y cells, and for enhanced colony growth of BHK cells in soft agar. NMOR was negative in an in vitro cytogenetic assay using RL1 (rat liver cell line) cells (IARC, 1978; NRC, 1981). 7.7 Carcinogenicity Carcinogenicity studies have been carried out with morpholine alone, as well as in the presence of nitrite, to investigate the possible formation and effect of NMOR. 7.7.1 Morpholine 7.7.1.1 Oral studies Greenblatt et al. (1971) treated 40 Swiss mice (20 male and 20 female) with 6.33 g morpholine/kg food (estimated dosage, 0.9 g/kg body weight per day for 28 weeks. The control group consisted of 80 mice of each sex. After a further 12 weeks of observation the surviving animals were sacrificed. No increase in the lung tumour rate (0.1 adenoma/mouse) was found compared to the controls (0.18 adenoma/mouse). It should be noted that the duration of exposure in this study was shorter than that normally used in a well-designed long-term carcinogenicity study. Multi-generation oral studies were performed on Sprague-Dawley rats fed 5, 50 or 1000 mg/kg morpholine, together with various dietary concentrations of sodium nitrite (0, 5, 50 or 1000 mg/kg diet) (Newberne & Shank, 1973; Shank & Newberne, 1976). From the day of conception, the pregnant animals were given 0 or 1000 mg morpholine/kg feed. The F1 and F2 generations were fed likewise for the length of the experiment. The estimated dosage for the young animals was 10 mg/day and for mature animals 20 mg/day. The average life-span was 117 weeks for the treated animals and 109 weeks for the controls. F1 and F2 generations were studied, the survivors being sacrificed in the 125th week. Table 17 summarizes the results. Three liver cell carcinomas, two lung angiosarcomas and one other, and two malignant gliomas were found in the group of 104 rats (F1 and F2) treated with morpholine. In a similar study using Syrian golden hamsters, only the F1 generation was studied, the survivors being sacrificed in the 110th week (Shank & Newberne. 1976). With morpholine alone (1000 mg per kg), no liver tumours were found but the number in the group (22) was small. Morpholine oleic acid salt (MOAS), at dosage levels of 0%, 0.25% or 1.0%, was added to the drinking-water of B6C3F1 mice for 96 weeks, and this was followed by normal tap water for a further 8 weeks (Shibata et al., 1987b). Details are given in Table 15 and section 7.3.1. Extensive biochemical, gross pathological and histological studies were performed. Only the incidence of hyperplasia in forestomach epithelium in the males of the 1% MOAS group was statistically higher than in the controls; otherwise, no significant increases in the incidence of non-neoplastic or neoplastic lesions were found. 7.7.1.2 Inhalation studies In a long-term inhalation study over 2 years, Sprague-Dawley rats (70 of each sex per group) received morpholine at mean exposure concentrations of 0, 0.036, 0.181 or 0.543 g/m3 (6 h/day, 5 days/week) for up to 104 weeks (Harbison et al., 1989). Further details are given in section 7.3.2 and Table 15. Tissues from the high-dose and control groups were subjected to extensive Table 17. Tumour incidence (liver and lung) in rats and hamsters after feeding morpholine, sodium nitrite or N-nitrosomorpholinea Dietary levels (mg/kg) Tumour incidence in rats (%) Tumour incidence in hamsters (%) Morpholine Sodium N-Nitrosomorpholine No. of Liver cell Liver angio Lung angio No. of Liver cell nitrite animalsb carcinoma sarcoma sarcoma animals carcinoma 0 0 0 156 0 0 0 23 4 0 1000 0 96 1 0 0 30 0 1000 0 0 104 3 0 2 22 0 1000 1000 0 159 97 14 23 16 31 50 1000 0 117 59 5 6 32 0 5 1000 0 154 28 12 8 400 1000 50 0 109 3 2 1 22 0 1000 5 0 172 1 2 1 19 0 50 50 0 152 2 1 1 30 0 5 5 0 125 1 2 2 40 0 0 0 5 128 58 15 9 35 0 0 0 50 94 93 21 20 18 6 a adapted from Shank & Newberne (1976) b F1 and F2 generations together histopathological examination; in the middle- and low-dose groups, this examination was limited to the eye and the respiratory tract. Ten males and 10 females per group were sacrificed at week 53. Survival at termination in the control, low-, middle- and high-dose groups, respectively, was 40, 44, 33 and 32 in males and 35, 27, 32 and 35 in females. No significant increase in the incidence of tumours was seen in rats of either sex. 7.7.2 Morpholine and nitrite 7.7.2.1 Oral studies Sander & Bürkle (1969) fed a group of seven female Sprague-Dawley rats 5 g morpholine together with 5 g nitrite/kg diet for 12 weeks. After 39 weeks, all of the animals developed hepato-cellular adenomas, six out of the seven hepatocellular carcinomas, two hemangioendotheliomas of the liver, one a cyst-adenocarcinoma of the liver and one a renal adenoma. Rats fed morpholine or nitrite alone did not develop tumours. As described in section 7.7.1.1, Shank & Newberne (1976) fed pregnant rats on a diet containing various concentrations of morpholine, sodium nitrite and NMOR. Table 17 summarizes the dietary concentrations and the tumour incidences for the experimental groups. Hepatocellular carcinoma and haemangio-sarcomas of the liver and angiosarcoma of the lungs were the most common tumours observed in the rats. The neoplasms induced by nitrite and morpholine were morphologically similar to those induced by NMOR. High concentrations (1000 mg/kg) of morpholine and nitrite together were carcinogenic to rats. When the morpholine concentration was reduced and the nitrite concentration remained high, the incidence of hepatic cell carcinomas decreased with a linear dose-response relationship. When morpholine concentration remained high, with decreasing nitrite concentration, the number of hepatic tumours was sharply reduced. This agrees with the observation in vitro that the nitrosation of morpholine depends on the square of the nitrite concentration (Mirvish et al., 1975). Groups of 40 male MRC Wistar rats were treated for 2 years with either 10 g morpholine/kg diet and drinking-water containing 3 g sodium nitrite/litre, or with drinking-water containing 0.15 g NMOR/litre. In both cases, one group of rats was also given sodium ascorbate (22.7 g/kg diet). The results of treatment with morpholine plus nitrite or with NMOR were similar to those reported above. When ascorbate was present, the liver tumours induced by morpholine plus nitrite had a longer induction period (93 versus 54 weeks) and a slightly lower incidence (49% versus 65%). However, ascorbate did not affect liver tumour induction by preformed NMOR. Of those treated with morpholine, nitrite and ascorbate, 21/39 animals developed forestomach tumours (Mirvish et al. 1976). In a similar study using Syrian hamsters (see section 7.7.1.1 and Table 17), a high morpholine, high nitrite diet (1000 mg/kg) induced liver cancer in some animals. In contrast, hamsters fed NMOR in the diet seemed to have greater resistance to tumour induction (Shank & Newberne, 1976). 7.7.3 Carcinogenicity of N-nitrosomorpholine NMOR has been shown to be carcinogenic in mice, rats, hamsters and various fish. Benign and malignant tumours of the liver and lung in mice, of the liver, kidney and blood vessels in rats, and of the liver in hamsters have been reported following oral administration of NMOR. After its subcutaneous injection, it produces tumours of the upper digestive and respiratory tract in hamsters. NMOR produces liver tumours following its intravenous injection in rats and liver tumours in various fish following its administration in tank water (IARC, 1978). 7.8 Factors modifying toxicity; toxicity of metabolites 7.8.1 Factors modifying toxicity Leaf et al. (1991) reported that rats (Sprague-Dawley, male) challenged with an E. coli lipopolysaccharide (LPS; 1 mg/kg body weight), followed 6 and 10 h later by morpholine (80 or 100 µmol/kg intraperitoneally) and arginine (400 µmol/kg) treatment, showed significantly increased NMOR formation compared with unchallenged control rats. The NMOR formation was measured by monitoring the NMOR metabolite N-nitroso-(2-hydroxyethyl) glycine in the urine. Furman & Rubenchik (1991) showed that endogenous synthesis of NMOR in the stomach of adult mice administered nitrite (oral) in combination with morpholine (intraperitoneal or subcutaneous) was increased after activation of peritoneal macrophages induced by intraperitoneal injection of E. coli LPS. 7.8.2 Morpholine metabolites Morpholine is eliminated almost entirely in a non-metabolized form in the urine of the rat, mouse, hamster and rabbit (section 6.3). N-cyanomorpholine ( N-morpholinocarbonitrile) was formed when morpholine was incubated in vitro with whole human saliva (Wishnok & Tannenbaum, 1976). Sohn et al. (1982a,b) identified a metabolite N-methylmorpholine- N-oxide (NMMO) in guinea-pig urine. Conaway et al. (1984a) reported that NMMO (0.0001-10 mg/ml) and other putative metabolites, N-hydroxymorpholine (0.0001-1 mg/ml) and 3-morpholinone (0.001-0.1 mg/ml), did not induce DNA repair at the non-toxic concentrations tested. The polyurethane foam catalyst, N-butylmorpholine (0.0001-0.1 mg/ml) was also inactive in the primary rat hepatocyte/DNA repair assay (Conaway et al., 1984a). The chemical intermediate N-hydroxyethylmorpholine induced DNA repair within the dose range 1-5 mg/ml (Conaway et al., 1984a). The genotoxicity of substituted morpholines might be a function of the substituent moiety rather than morpholine itself (Conaway et al., 1984a). 7.9 Mechanisms of toxicity - mode of action The irritating and corrosive properties of morpholine are due to its basicity. The mechanism of action of its systemic effects is not known. Morpholine fungicides have been shown to act by inhibiting several enzymes of sterol biosynthesis (Hesselink et al. 1990; Mercer, 1991). 8. EFFECTS ON HUMANS 8.1 General population exposure No data are available on the effects of short- and long-term exposure to morpholine on the general population. There are no reports of poisonings by morpholine. 8.1.1 Controlled human studies The Cosmetic Ingredient Review (1989, 1991b) reported unpublished studies of occlusive patch testing and in-use testing of two mascara products containing 1% morpholine by 320 women between the ages of 18 and 65. All 320 volunteer subjects underwent occlusive patch testing (using the Shelanski/Jordan repeat insult procedure). After 24 h, the patches were removed and the sites graded. This procedure was repeated several times for a total of 10 applications (3´ weeks). Following the 10th application, there was a 10-day to 2-week rest period, after which the subjects were again patch tested, this time for 48 h, and then scored. After another 10-day to 2-week rest period, the subjects were again patch-tested for 48 h and scored. A final reading took place 24 h after this. Of the 320 subjects patch-tested with charcoal mascara, 314 showed no reaction, the remaining six showed varying reactions. The researchers explained this irritation as being either non-specific or due to the occlusive patching procedure. The same results were found with the blue mascara. It was concluded from this study that neither of the mascara products containing 1% morpholine was a primary irritant, nor were they contact sensitizers (Cosmetic Ingredient Review, 1989, 1991b). In the in-use testing, 50 women used charcoal mascara once daily for 4 weeks, and 50 women used blue mascara likewise. A further 100 women used once daily lash conditioner, eye make-up remover and mascara (50 for each colour). In another group, 100 subjects used lash conditioner and eye make-up remover but no mascara. All underwent the above-described patch testing simultaneously. There were a few complaints associated with the in-use testing. The charcoal mascara caused a mild burning sensation in three subjects, some itching in a further three, and minor irritation in three. These findings were put down to improper use of the product, which resulted in the product entering the eye and causing mild irritation (Cosmetic Ingredient Review, 1989, 1991b). Shea (1939) exposed himself to 43 g morpholine/m3 (12 000 ppm) for 90 seconds. He experienced irritation of the nose followed by coughing. Pipetting of pure morpholine from the stock solution led to inhalation of vapour, a severe sore throat, and violently reddened mucous membrane. Shea (1939) reported that when applied to human finger tips undiluted morpholine caused a cracking of the eponychium and hyponychium about the nail and an intense stinging sensation. Diluted morpholine (1 to 40) was a mild irritant. 8.1.1.1 Organoleptic effects Hellman & Small (1974) tested the absolute and recognition threshold odour index of 101 petrochemicals using a trained panel. During a 20-min exposure, 0.036 mg morpholine/m3 was recognized by 50% of the panel and 0.5 mg morpholine/m3 by all of the panel (giving an odour index of 65.9). It was described as an unpleasant fishy smell. The phenomenon known as blue vision, gray vision or haloes "glaucopsia" is a well-documented effect of amines, including morpholine and its derivatives, on the eyes of workers, particularly in the foam plastic industry (Mastromatteo, 1965; Jones & Kipling, 1972). The vision becomes misty and haloes appear several hours after the subjects have been exposed to these vapours at concentrations too low to cause discomfort or disability during several hours of exposure. The disturbances lasted for 4-6 h after leaving work. In a minority of the workers examined, mild conjunctival infection was observed; no corneal oedema or alteration in visual acuity was detected by inspection or by ophthalmoscopy. The atmospheric concentrations of morpholine and other similar compounds were not reported. 8.1.2 Epidemiological studies No data from epidemiological studies for morpholine have been reported. 8.2 Occupational exposure Studies into the levels of morpholine and NMOR in workplace air are described in section 5.3. Katosova et al. (1991) reported a cytogenetic analysis of the lymphocytes in the peripheral blood of 24 workers (16 men, 8 women) with 3 to 10 years of exposure to morpholine during production. These were compared to a control group of the same size from the same town having no contact with chemicals at work. The morpholine workers were exposed to concentrations of morpholine in air of 0.54-0.93 mg/m3, the maximum single concentration being 0.74-2.14 mg/m3. The lymphocytes were cultivated for 56 h and all chromatid and chromosome types as well as chromosome gaps were registered. From 2561 cells analysed from the test group, only 2.08% had aberrations, compared to 1.61% out of 2050 cells in the control group, showing no significant increase in the number of cells with chromosome aberrations. 9. EFFECTS ON OTHER ORGANISMS IN THE LABORATORY AND FIELD 9.1 Laboratory experiments The data reported in this section refer to nominal concentrations. 9.1.1 Microorganisms 9.1.1.1 Microorganisms in water a) Bacterial and cyanobacterial cultures In a 16-h cell multiplication inhibition test (growth parameter: turbidity; pH 7; 25°C), the toxicity threshold (3% reduction in population growth) of morpholine for Pseudomonas putida was 310 mg/litre (Bringmann & Kühn, 1977a). The effect of morpholine at neutral pH on the growth of Pseudomonas strains in succinate mineral salt medium has been reported by Knapp et al. (1982) and Emtiazi & Knapp (1994). Both studies used two strains of Pseudomonas (all four were different) which had not previously been exposed to morpholine and found that morpholine at 8.7 g/litre had no effect on the rate or extent of growth. The mixed bacterial cultures studied by Mazure (1993) were able to degrade morpholine rapidly at 5, 10 and 20 g/litre. The degradation rate was highest at 10 g/litre but was only a little less at 20 g/litre. At 40 g/litre degradation was markedly inhibited. As reported in section 4.2.1, morpholine at up to 870 mg/litre does not inhibit certain strains of Mycobacterium spp. that have been found to biodegrade the compound. In a cell multiplication inhibition test (growth parameter: turbidity; pH 7; 192 h) under continual lighting conditions using Microcystis aeruginosa, a cyanobacterium, the onset of inhibition, defined variously as a 1% (Bringmann, 1975) or 3% (Bringmann & Kühn, 1978) reduction in population growth, was found to occur at a morpholine concentration of 1.7 mg/litre. b) Activated sludge The effect of morpholine on the respiratory, dehydrogenase and nitrification activities of activated sludge was determined by Strotmann et al. (1993). Short-term respiration assays (pH 7.0; incubation time 30 min) were performed according to the OECD guideline 209 (OECD, 1984). The dehydrogenase activity was determined by measuring the reduction of resazurin to resorufin. At concentrations of 1000 mg morpholine/litre, both respiratory and dehydrogenase activities were inhibited by up to 20%. A pH-dependent inhibitory effect on the dehydrogenase activity was not found (pH 6.0-7.5). Nitrification activity was determined using a specially adapted culture of nitrifying bacteria. Suspended biomass, previously inoculated with activated sludge and acclimated to a high-strength ammonium feed, was incubated for 30 min at pH 7.2 with different amounts of morpholine. The extent of inhibition was based on the reduction in oxygen uptake rate, compared to a control containing no morpholine. Nitrification activity was inhibited by 5% at a morpholine concentration of 5%. c) Protozoa The toxicity thresholds (defined as a 5% reduction in population growth) of morpholine for the protozoa Entosiphon sulcatum (Bringmann, 1978), Uronema parduczi and Chilomonas paramaecium (Bringmann & Kühn (1980), as measured in cell multiplication inhibition tests under given conditions, are summarized in Table 18. 9.1.1.2 Microorganisms in soil No data are available concerning soil bacteria or fungi. 9.1.1.3 Pathogenic microorganisms Morpholine, like other amines, shows antibacterial and anti- mycotic action. Kubis et al. (1983) demonstrated that 0.5% morpholine inhibits the growth of a variety of pathogenic bacteria on agar plates and in liquid medium. Application of 10% morpholine was shown to cure an experimental mycosis in guinea-pigs caused by Trychophyton mentagrophytes var. granulosum (Kubis et al., 1981). The pH was not specified. 9.1.2 Other aquatic organisms 9.1.2.1 Monocellular green algae Table 19 summarizes the tests carried out concerning the effect of morpholine on algae. In a 192-h test, the onset of inhibition by morpholine (in distilled water, pH 7.0) of cell multiplication (here defined as 3% in population growth) in the green alga Scenedesmus quadricauda in a turbidity test was noted at a concentration of 4.1 mg/litre (Bringmann & Kühn, 1977a, 1978; see parallel results test with Microcystis aeruginosa, section 9.1.1.1a). Table 18. Toxicity threshold (TT) of morpholine for protozoa in the cell multiplication inhibition test (growth factor: cell number) Species Test duration pH Temperature TT Reference (h) (°C) (mg/litre) Entosiphon sulcatuma 72 6.9 25 12 Bringmann (1978) Uronema parduczia 20 6.9 25 815 Bringmann & Kühn (1980) Chilomonas paramaeciumb 48 6.9 20 18 Bringmann et al. (1980) a bacteriovorous ciliate b saprozoic flagellate The results of Adams et al. (1985) showed that Selenastrum capricornutum grows exponentially without a lag phase in the presence as well as in the absence of morpholine, the growth being inhibited first at a concentration of 100 mg/litre. The inhibition was most marked after 6 days, shortly before reaching the stationary phase; the no-observed-effect level (NOEL) was 10 mg/litre. Using the same species, Calamari et al. (1980) evaluated algal growth by measuring in vivo the fluorometric units at 48, 72, 96 h and 7 days. A 96-h EC50 of 28 mg/litre was determined. Millington et al. (1988) investigated the effects of varying growth medium composition on the toxicity of morpholine to three freshwater green algae: Selenastrum capricornutum, Scenedesmus subspicatus and Chlorella vulgaris. They reported that the toxic effect of morpholine on algae depended upon the species as well as upon the test medium used (see Table 19). 9.1.2.2 Invertebrates Table 20 summarizes the results of three investigations into the toxicity of morpholine, as measured by the immobilization of Daphnia magna (Bringmann & Kühn, 1977b, 1982; Calamari et al., 1980). The test conditions were almost identical (pH 7.6-8.0; 18-22°C) and the resulting EC50 values (100-119 mg/litre) were in good agreement. Kramer et al. (1983) investigated the relative toxicity of organic solvents including morpholine to mosquito (Aedes aegypti) larvae (2 to 3 instar) by exposing 10-20 of them to 50 ml of test solution in a glass container for 4 h at 22-24°C. The test was run in triplicate. An LC50 of 1000 mg/litre was reported, together with the observation that death was accompanied by convulsive larval twitching. 9.1.2.3 Vertebrates The acute toxicity of morpholine for fish has been tested on a number of fresh, sea and brackish water species (see Table 21). The lowest LC50 (180 mg/litre) was found for rainbow trout (Oncorhynchus mykiss; formerly Salmo gairdneri) in very soft water (20 mg CaCO3/litre). In hard water (320 mg CaCO3/litre), the poisoning effect, with reference to the LC50 value, was less than half (Calamari et al., 1980). Brachydanio rerio proved to be relatively insensitive (LC0 value > 1000 mg/litre) (Wellens, 1982). LC50 values for the freshwater fish Leuciscus idus melanotus and Lepomis macrochirus were found to be 240-285 mg/litre (48 h) and 350 mg/litre (96 h), respectively (Juhnke & Lüdemann, 1978; Dawson et al., 1977). The 96-h LC50 for the marine fish Menidia beryllina was reported to be 400 mg/litre (Dawson et al., 1977). McCain & Peck (1976) investigated the effect of morpholine on common Hawaiian fish. Table 19. Toxicity of morpholine for algaea Species Growth parameters Test duration pH Temperature Effectb/concentration Reference (h) (°C) (mg/litre) Scenedesmus inhibition of cell 192 neutral 27 TT: 4.1 Bringmann & Kühn (1978) quadricauda multiplication (turbidity) Selenastrum cell number after: 24 not given 22 NOEC: 100 Adams et al. (1985) capricornutum 48/72 NOEC: 80 96/120 NOEC: 50 144 NOEC: 10 area under 24-72 NOEC: 80 growth curve 24-96 NOEC: 80 24-120 NOEC: 80 24-144 NOEC: 50 growth rate 24-72 NOEC: 80 24-96 NOEC: 80 24-120 NOEC: 80 24-144 NOEC: 80 S. capricornutum growth rate (in vivo 96 not given 24 EC0: 10c Calamari et al. (1980)d fluorescence) EC50: 28c EC100: 80c S. capricornutum area under growth 24-120 not given 22 ECL0: 100e Millington et al. (1988) curve (cell number) ECL0: 50f ECL0: 50g Scenedesmus area under growth 24-120 not given 22 ECL0: 50e Millington et al. (1988) subspicatus curve (cell number) ECL0: 5f ECL0: 10g Table 19 (cont'd) Species Growth parameters Test duration pH Temperature Effectb/concentration Reference (h) (°C) (mg/litre) Chlorella vulgaris area under growth 24-120 not given 22 ECL0: 100e Millington et al. (1988) curve (cell number) ECL0: 80f ECL0: 5g a Adapted from BUA (1991) b TT = toxicity threshold; NOEC = no-observed-effect concentration; EC0, EC50, EC100 = effective concentration inhibiting for the growth of 0, 50 and 100% of the population; ECL0 = lowest-tested concentration with significant growth inhibition (from 5, 10, 50, 80, 100 mg/litre) c equivalent to GC-FID measured concentration ± 10% d method according to Chiaudini & Vighi (1978) e Bolds basal medium (BBM): rich medium; N/P-ratio 14:1 f OECD medium: less N than BBM; N/P-ratio 24:1 g EPA medium: less N than BBM; N/P-ratio 50:1 Table 20. Acute toxicity of morpholine for the water flea Daphnia magna (test duration: 24 h; effect: immobilization)a Test systemb pH Temperature Effect/concentration Reference (°C) (mg/litre) Static 7.6-7.7 20-22 EC0: 16 Bringmann & EC50: 100 Kühn (1977b) EC100: 500 Static 8 ± 0.2 20 EC0: 68 Bringmann & EC50: 101 (83-122)c Kühn (1982) EC100: 260 Static 7.9 ± 0.3 18-22 EC50: 119 (112-127)c Calamari et al. (1980) a adapted from BUA (1991) b in accordance with OECD-guideline 202 part I c 95% confidence limits The 96-h LC50 (TLm) was between 100 and 180 mg/litre for white mullet (Vala mugil engeli; former designation: Chelon engeli), between 320 and 560 mg/litre for Gambusia affinis, and more than 1000 mg/litre for Tilapia sp. 9.1.3 Terrestrial organisms 9.1.3.1 Plants Reynolds (1989) found that 4.4±0.9 mol morpholine/m3 (383 mg/litre) lowers the percentage germination of lettuce seeds (Lactuca sativa) by 50% of the control value. The seeds were kept on agar for 3 days in sealed plastic containers at a temperature of 30°C. 9.1.3.2 Animals No data are available concerning the effects of morpholine on terrestrial animals. 9.2 Field observations No data have been reported concerning field observations involving morpholine. Table 21. Acute toxicity of morpholine in fish static test systemsa Species Aquatic system Test conditions Test Effect/ Reference duration concentration (h) (mg/litre) Rainbow trout freshwater hardness: 320 mg CaCO3/litre; pH 7.4; 96 LC50 380 Calamari et al. (Salmo gairdneri) 15°C; > 95% O2 saturation (375-460)b (1980) Rainbow trout freshwater hardness: 20 mg CaCO3/litre; pH 7.4; 96 LC50 180 Calamari et al. (Salmo gairdneri) 15°C; > 95% O2 saturation (1980) Golden orfe freshwaterc hardness: 220-320 mg CaCO3/litre; pH 8; 20°C; 48 LC50 285 Juhnke & (Leuciscus idus continual aeration (Juhnke laboratory) (250/340)d Lüdemann melanotus) (1978) Golden orfe freshwaterc hardness: 220-320 mg CaCO3/litre; pH 8; 20°C; 48 LC50 240 Juhnke & (L. idus melanotus) continual aeration (Lüdemann laboratory) (100/301)d Lüdemann (1978) Zebra fish freshwater hardness: 250 mg CaCO3/litre; pH 7.5; 22°C; 96 LC50> 1000 Wellens (1982) (Brachydanio rerio) no aeration (> 1000/> 1000)d Bluegill sunfish freshwater hardness: 55 mg CaCO3/litre; pH 7.6-7.9; 23°C; 96 LC50 350 Dawson et (Lepomis macrochirus) intermittent aeration 24 h after test; from al. (1977) commercial hatcheries; 14 days acclimatization Tidewater silverside marine artificial seawater; 20°C; continual aeration; 96 LC50 400 Dawson et (Menidia beryllina) caught wild Horseshoe Bay (New Jersey); al. (1977) 40-100 mm length; 14 days acclimatization Mosquito fish marinee,f natural seawater (32% salinity); continual 96 LC0 320 McCain & (Gambusia affinis) aeration; 25.5-27.8°C; caught wild (Oahu, LC100 560 Peck (1976) Hawaii); 38-64 mm length; 7 days acclimatization Table 21 (cont'd) Species Aquatic system Test conditions Test Effect/ Reference duration concentration (h) (mg/litre) "Coloured perch" marinee,f natural seawater (32% salinity); continual 96 LC0 1000 McCain & (Tilapia sp.) aeration; 25.5-27.8°C; caught wild (Oahu, Peck (1976) Hawaii); 30-65 mm length; 7 days acclimatization White mullet marinee natural seawater (32% salinity); continual 96 LC0 100 McCain & (Chelon engeli) aeration; 25.5-27.8°C; caught wild (Oahu, LC100 320 Peck (1976) Hawaii); 91-128 mm length; 7 days acclimatization a adapted from BUA (1991) b 95% confidence limits c parallel tests in two different laboratories d LC0/LC100 e the fish were caught in rivers, presumably in the estuary area f fresh or brackish water fish that were exposed to the marine system. 10. PREVIOUS EVALUATIONS BY INTERNATIONAL BODIES The carcinogenic risks were evaluated by an International Agency for Research on Cancer ad hoc Expert Group in 1988. It was concluded that there is inadequate evidence for the carcinogenicity of morpholine in experimental animals. No data were available from studies in humans on the carcinogenicity of morpholine. The overall evaluation was that morpholine was not classifiable for its carcinogenicity to humans (IARC, 1989). IARC also evaluated N-nitrosomorpholine (NMOR). It concluded that there is sufficient evidence for a carcinogenic effect of NMOR in several experimental animal species. No human data, case reports or epidemiological studies were available, nor was it possible to identify exposed groups. In spite of the absence of epidemiological data, NMOR should be regarded for practical purposes as if it were carcinogenic to humans (IARC, 1978). REFERENCES Aarts AJ, Benson GB, Duchateau NL, & Davies KM (1990) Modern analytical techniques for the detection of rubber chemicals and their decomposition products in the environment. Int J Environ Anal Chem, 38: 85-95. Ackermann P, Margot P, & Klotzsche, C (1989) Agricultural fungicides. In: Ullmann's encyclopedia of industrial chemistry, 5th ed. Weinheim, VCH Verlagsgesellschaft, vol A12, p 107. Adams N, Goulding KH, & Dobbs AJ (1985) Toxicity of eight water- soluble organic chemicals to Selenastrum capricornutum: a study of methods for calculating toxic values using different growth parameters. Arch Environ Contam Toxicol, 14: 333-345. Agarwala KK (1982) Study on stability of morpholine in high pressure boiler system. Fertil Technol, 19: 73-75. Air Products and Chemicals (1989) Material safety data sheet. Allentown, Pennsylvania, Air Products and Chemicals, Inc. Aitzetmüller K & Thiele E (1982) Absence of volatile N-nitrosamines in margarines. J Am Oil Chem Soc, 59: 387-389. Anderson GE (1983) Human exposure to atmospheric concentrations of selected chemicals. Research Triangle Park, North Carolina, US Environmental Protection Agency, Office of Air Quality Planning and Standards, pp 455-473 (Report submitted by Systems Applications, Inc., San Rafael, California) (EPA No 83-265249). Archer MC, Tannenbaum SR, & Wishnok JS (1977) Nitrosamine formation in the presence of carbonyl compounds. In: Walker EA, Bogovski P, & Griciute L ed. Environmental N-nitroso compounds analysis and formation. Lyon, International Agency for Research on Cancer, pp 141-145 (IARC Scientific Publications No. 14). Archer MC, Yang HS, & Okun JD (1979) Acceleration of nitrosamine formation at pH 3.5 by microorganisms. In: Walker EA, Castegnaro M, Griciute L, & Lyle RE ed. Environmental aspects of N-nitroso compounds. Lyon, International Agency for Research on Cancer, pp 239-246 (IARC Scientific Publications No. 19). Atkinson R (1988) Estimation of gas-phase hydroxyl radical rate constants for organic chemicals. Environ Toxicol Chem, 7: 435-442. Badura R, Linde H, & Schuster RH (1989) Analysis of volatile products in vulcanisation fumes. In: Proceedings of the International Rubber Conference, Prague, 8-11 May. London, International Rubber Association, pp 19-38. BASF (1967) [Morpholine: Toxicological data.] Ludwigshafen, BASF AG, 2 pp (Internal report) (in German). BASF (1987) [Data sheets: Morpholine.] Ludwigshafen, BASF AG, 8 pp (in German). BASF (1990) [Test report: Zahn-Wellens-Test.] Ludwigshafen, BASF AG, 12 pp (Unpublished report) (in German). BIA (Industries Association Institute for Work Safety) (1989) [Measurement of dangerous substances - BIA data sheet.] Bielefeld, Erich Schmidt Verlag (in German). Bianchi A & Muccioli G (1978) [Determination of morpholine together with isopropyl alcohol, toluene and xylenes (o-m-p) in the atmosphere by means of gas-chromatography.] Ann Ist Super Sanita, 14: 441-445 (in Italian with English summary). Börzsönyi M, Török G, Surján A, Challis BC, & Bär V (1981) Protective effect of a new antioxidant on acute hepatotoxicity caused by morpholine plus nitrite in rats. Toxicol Lett, 7: 285-288. Bosholm J (1983) [Description of the behaviour of gaseous compounds in water/steam systems.] Kernenergie, 26: 198-201 (in German). Boyland E, Nice E, & Williams K (1971) The catalysis of nitrosation by thiocyanate from saliva. Food Cosmet Toxicol, 9: 639-643. Braun R, Schöneich J, & Ziebarth D (1977) In vivo formation of N-nitroso compounds and detection of their mutagenic activity in the host-mediated assay. Cancer Res, 37: 4572-4579. Bringmann G (1975) [Determination of the biological effect of water pollutants on blue algae Microcystis using the cell multiplication inhibition test.] Gesund-Ing, 96: 238-241 (in German). Bringmann G (1978) [Determination of the biological effect of water pollutants in protozoa I Bacteriovorous flagellate protozoa (Model organism: Entosiphon sulcatum Stein).] Z Wasser Abwasser Forsch, 11: 210-215 (in German). Bringmann G & Kühn R (1977a) [Toxicity thresholds of water pollutants for bacteria (Pseudomonas putida) and green algae (Scenedesmus quadricauda) in the cell multiplication inhibition test.] Z Wasser Abwasser Forsch, 10: 87-98 (in German). Bringmann G & Kühn R (1977b) [Results of toxic action of water pollutants on Daphia magna.] Z Wasser Abwasser Forsch, 10: 161-166 (in German). Bringmann G & Kühn R (1978) [Toxicity thresholds of water pollutants for blue algae (Microcystis aeruginosa) and green algae (Scenedesmus quadricauda) in the cell multiplication inhibition test.] Vom Wasser, 50: 45-60 (in German). Bringmann G & Kühn R (1980) [Determination of the biological effect of water pollutants in protozoa. II. Bacteriovorous ciliates.] Z Wasser Abwasser Forsch, 1: 26-31 (in German). Bringmann G & Kühn R (1982) [Results of the toxic action of water pollutants on Daphnia magna tested by an improved standardized procedure system.] Z Wasser Abwasser Forsch, 15: 1-6 (in German). Bringmann G, Kühn R, & Winter A (1980) [Determination of the biological effect of water pollutants in protozoa III Saprozoic flagellates.] Z Wasser Abwasser Forsch, 13: 170-173 (in German). Brouwer R, Marquart H, de Mik G, & van Hemmen J (1992) Risk assessment of dermal exposure of greenhouse workers to pesticides after re-entry. Arch Environ Contam Toxicol, 23: 273-280 Brown AR (1966) Morpholine: its properties and uses. Manuf Chem Aerosol News, Dec 1966: 50-52. Brown VR & Knapp JS (1990) The effect of withdrawal of morpholine from the influent and its reinstatement on the performance and microbial ecology of a model activated sludge plant treating a morpholine- containing influent. J Appl Bacteriol, 69: 43-53. Brown VR, Knapp JS, & Heritage J (1990) Instability of the morpholine- degradative phenotype in mycobacteria isolated from activated sludge. J Appl Bacteriol, 69: 54-62. Brunnemann KD & Hoffmann D (1991) Decreased concentrations of N-nitrosodiethanolamine and N-nitrosomorpholine in commercial tobacco products. J Agric Food Chem, 39: 207-208. Brunnemann KD, Scott JC, & Hoffmann D (1982) N-nitroso-morpholine and other volatile N-nitrosamines in snuff tobacco. Carcinogenesis, 3: 693-696. BUA (Society of German Chemists, Advisory Committee on Existing Chemicals of Environmental Relevance) (1991) [Morpholine.] Weinheim, VCH Verlagsgesellschaft, 181 pp (BUA Report No. 56) (in German). Calamari D, Da Gasso R, Galassi S, Provini A, & Vighi M (1980) Biodegradation and toxicity of selected amines on aquatic organisms. Chemosphere, 9: 753-762. Calmels S, Ohshima H, Vincent P, Gounot A-M, & Bartsch H (1985) Screening of micro-organisms for nitrosation catalysis at Ph 7 and kinetics studies on nitrosamines formation from secondary amines by E. coli strains. Carcinogenesis, 6: 911-915. Calmels S, Ohshima H, Crespi M, Leclerc H, Cattoen C, & Bartsch H (1987) N-nitrosoamine formation by microorganisms isolated from human gastric juice and urine: biochemical studies on bacteria- catalysed nitrosation. In: Bartsch H, O`Neill IK, & Schulte-Hermann R ed. The relevance of N-nitroso compounds to human cancer: Exposures and mechanisms. Lyon, International Agency for Research on Cancer, pp 391-395 (IARC Scientific Publications No. 84). Calmels S, Ohshima H, & Bartsch H (1988) Nitrosamine formation by denitrifying and non-denitrifying bacteria: Implication of nitrite reductase and nitrate reductase in nitrosation catalysis. J Gen Microbiol, 134: 221-226. Calmels S, Dalla Venezia N, & Bartsch H (1990) Isolation of an enzyme catalysing nitrosamine formation in Pseudomonas aeruginosa and Neisseria mucosae. Biochem Biophys Res Commun, 171(2): 655-660. Calmels S, Béréziat J-C, Ohshima H, & Bartsch H (1991a) Bacterial formation of N-nitroso compounds in the rat stomach after omeprazole- induced achlorhydria. In: O'Neill IK, Chen J, & Bartsch H ed. Relevance to human cancer of N-nitroso compounds, tobacco smoke and mycotoxins. Lyon, International Agency for Research on Cancer, pp 187-191 (IARC Scientific Publications No. 105). Calmels S, Béréziat J-C, Ohshima H, & Bartsch H (1991b) Bacterial formation of N-nitroso compounds in the rat stomach after omeprazole-induced achlorhydria. Carcinogenesis, 12: 435-439. Cech JS & Chudoba J (1988) Effect of the solids retention time on the rate of biodegradation of organic compounds. Acta Hydrochim Hydrobiol, 16: 313-323. Cech JS, Hartman P, Slosárek M, & Chudoba J (1988) Isolation and identification of a morpholine-degrading bacterium. Appl Environ Microbiol, 54: 619-621. Challis BC & Kyrtopoulos SA (1979) The chemistry of nitroso-compounds. Part 11. Nitrosation of amines by the two-phase interaction of amines in solution with gaseous oxides of nitrogen. J Chem Soc Perkin Trans I, 1979: 299-304. Challis BC & Outram JR (1979) The chemistry of nitroso-compounds. Part 15. Formation of N-nitrosoamines in solution from gaseous nitric oxide in the presence of iodine. J Chem Soc Perkin Trans I, 1979: 2768-2775. Chemical Marketing Reporter (1989) Aromatics. Morpholine. Chem Mark Rep, July 17: 13. Chemical Marketing Reporter (1990) Dow to exit morpholine. Chem Mark Rep, May 28: 7. Chiaudani G & Vighi M (1978) The use of Selenastrum capricornutum batch cultures in toxicity studies. Mitt Int Ver Limnol, 21: 316-329. Collaert B, Attström R, De Bruyn H, & Movert R (1992a) The effect of delmopinol rinsing on dental plaque formation and gingivitis healing. J Clin Periodontol, 19: 274-280. Collaert B, Edwardsson S, Attström R, Hase J, Aström M, & Movert R (1992b) Rinsing with delmopinol 0.2% and chlorhexidine 0.2%: Short- term effect on salivary microbiology, plaque, and gingivitis. J Periodontol, 63: 618-625. Conaway CC, Myhr BC, Rundell JO, & Brusick DJ (1982a) Evaluation of morpholine, piperazine and analogues in the L5178Y mouse lymphoma assay and Balb/3T3 transformation assay. Presented at the 13th Annual Meeting of the Environmental Mutagen Society, Boston, 22-28 February 1982. New York, John Wiley and Sons, pp 1-15. Conaway CC, Myhr BC, Rundell JO, & Brusick DJ (1982b) Evaluation of morpholine, piperazine and analogues in the L5178Y mouse lymphoma assay and Balb/3T3 transformation assay. Environ Mutagen, 4: 390 (Abstract). Conaway CC, Tong C, & Williams GM (1984a) Evaluation of morpholine, 3-morpholine, and N-substituted morpholines in the rat hepatocyte primary culture/DNA repair test. Mutat Res, 136: 153-157. Conaway CC, Coate WB, & Voelker RW (1984b) Subchronic inhalation toxicity of morpholine in rats. Fundam Appl Toxicol, 4: 465-472. Cooney RV & Ross PD (1987) N-nitrosation and N-nitration of morpholine by nitrogen dioxide in aqueous solution: effects of vanillin and related phenols. J Agric Food Chem, 35: 789-793. Cooney RV, Ross PD, Bartolini GL, & Ramseyer J (1987) N-nitrosoamine and N-nitroamine formation: Factors influencing the aqueous reactions of nitrogen dioxide with morpholine. Environ Sci Technol, 21: 77-83. Cooney RV, Ross PD, Hatch-Pigott V, & Ramseyer J (1992) Carcinogenic N-nitrosamine formation: A requirement for nitric oxide. J Environ Sci Health, 27(3): 789-801. Cosmetic Ingredient Review (1986) Scientific literature review on morpholine. Washington, DC, The Cosmetic, Toiletry and Fragrance Association, 71 pp. Cosmetic Ingredient Review (1989) Final report on the safety assessment of morpholine. J Am Colloq Toxicol, 8: 707-748. Cosmetic Ingredient Review (1991a) CIR annual report 1991. Washington, DC, The Cosmetic, Toiletry & Fragrance Association, 67 pp. Cosmetic Ingredient Review (1991b) Protocol: Repeated insult patch testing and in-use testing. Washington, DC, The Cosmetic, Toiletry & Fragrance Association, 16 pp (Unpublished report). Cusano F & Luciano S (1993) Contact dermatitis from pramoxine. Contact Dermatitis, 28: 39: Davies R, Massey RC, & McWeeny DJ (1980) The catalysis of the N-nitrosation of secondary amines by nitrosophenols. Food Chem, 6: 115-122. Dawson GW, Jennings AL, Drozdowski D, & Rider E (1977) The acute toxicity of 47 industrial chemicals to fresh and saltwater fishes. J Hazard Mater, 1: 303-318. Dmitrenko GN & Gvozdyak P (1988) Detection of morpholine by mycobacteria. In: Proceedings of a Conference on Microbiological Methods for Protecting the Environment, Puschino, USSR, 5-7 April 1988. Puschino, Scientific Centre for Biological Research of the Academy of Sciences, 141 pp. Dmitrenko GN, Udod VM, & Gvozdyak PI (1985) Destruction of morpholine by fixed bacteria. Khim Tekhnol Vody, 7: 71-73. Dmitrenko GN, Gvodzdyak PI, & Udod VM (1987) Selection of destructor microorganisms for heterocyclic xenobiotics. Khim Tekhnol Vody, 9(5): 442-445. Dodson JJ & Bitterman ME (1989) Compound uniqueness and the interactive role of morpholine in fish chemoreception. Biol Behav, 14: 13-27. Donath G, Heitmann HG, Messer J, & Schott M (1977) [Determination of the distribution coefficients of volatile alkalising agents used in power plants between steam and water phases and their importance for the corrosive behaviour of materials.] Vom Wasser, 49: 221-243 (in German). Dropkin D (1985) Sampling of automobile interiors for organic emissions. Research Triangle Park, North Carolina, US Environmental Protection Agency, 20 pp (PB85-172567). Dynamac Corporation (1988) Information review: Morpholine (EPA contract No. 68-02-4251). Rockville, Maryland, Dynamac Corporation, pp 1-52 (IR-514) (Report prepared for TSCA Interagency Testing Committee). ECETOC (1991) Critical evaluation of methods for the determination of N-nitrosamines in personal care and household products. Brussels, European Chemical Industry Ecology and Toxicology Centre (Technical Report No. 42). EEC (1983) Council directive 79831 - Annex V, Part C: Methods for determination of ecotoxicity. 5.2 Degradation - Biotic degradation Manometric Respirometry. Brussels, Commission of the European Union. EEC (1990) Proposal for a council directive on the approximation of the laws of the Member States relating to cosmetic products (SEC(90) 1985 final) (90/C 322/06). Off J Eur Communities, C/322: 29-43. Edwards G, Whong W-Z, & Speciner N (1979) Intrahepatic mutagenesis assay: a sensitive method for detecting N-nitrosomorpholine and in vivo nitrosation of morpholine. Mutat Res, 64: 415-423. Emtiazi G (1993) Microbial degradation of linear and cyclic amines. Leeds, University of Leeds, Department of Microbiology (Thesis). Emtiazi G & Knapp JS (1994) The biodegradation of piperazine and structurally-related linear anc cyclic amines. Biodegradation, 5: 83-92. Environment Agency, Japan (1980) Annual report on chemicals in the environment. Tokyo, Environment Agency, pp 72-73. Estrin NF, Haynes CR, & Whelan JM (1982) Specifications/spectra. CTFA compendium of cosmetic ingredient composition. Washington, DC, The Cosmetic, Toiletry and Fragrance Association, Inc. Fadlallah S, Cooper SF, Fournier M, Drolet D, & Perrault G (1990) Determination of N-nitroso compounds in the environment of a metal factory using metalworking fluids. Int J Environ Anal Chem, 39: 281-288. Fajen JM, Carson GA, Rounbehler DP, Fan TY, Vita R, Goff UE, Wolf MH, Edwards GS, Fine DH, Reinhold V, & Biemann K (1979) N-nitrosamines in the rubber and tire industry. Science, 205: 1262-1264. Fan TY, Vita R, & Fine DH (1978) C-nitro compounds: a new class of nitrosating agents. Toxicol Lett, 2: 5-10. Fisher AA (1986) Contact Dermatitis. Philadelphia, Pennsylvania, Lea & Febiger. Furman MA & Rubenchik BL (1991) Formation of carcinogenic N-nitro compounds after intraperitoneal administration of nitrosating precursors in C57BLl/6 line mice. Eksp Onkol, 13(2): 14-22. Gavinelli M, Fanelli R, Bonfanti M, Davoli E, & Airoldi L (1988) Volatile nitrosamines in foods and beverages: preliminary survey of the Italian market. Bull Environ Contam Toxicol, 40: 41-46. Gilbert R & Saheb SE (1987) Field measurement of the distribution coefficients of chemical additives used for corrosion control in steam-water cycles. Mater Perform, 26: 30-36. Gilbert R, Rioux R, & Saheb SE (1984) Ion chromatographic determination of morpholine and cyclohexylamine in aqueous solutions containing ammonia and hydrazine. Anal Chem, 56: 106-109. Glatt HR & Oesch F (1981) [Ames test for morpholine.] Ludwigshafen, BASF AG, 11 pp (Unpublished report submitted by the Pharmacological Institute, University of Mainz, Germany). Grant WM (1974) Morpholine. In: Toxicology of the eye, 2nd ed. Sringfield, Illinois, Charles C. Thomas,vol 2, pp 722-723. Greenblatt M, Mirvish S, & So BT (1971) Nitrosamine studies: induction of lung adenomas by concurrent administration of sodium nitrite and secondary amines in Swiss mice. J Natl Cancer Inst, 46: 1029-1034 (Abstract). Griffiths MH (1968) The metabolism of N-triphenylmethylmorpholine in the dog and rat. Biochem J, 108: 731-740. Grodeckaja NS & Karamzina NM (1973) [Initial reactions by the organism to the effects of industrial substances in concentrations of minimal effect (Limac, Limch).] Toksikol Nov Prom Chim Veshchestv, 13: 12-23 (in Russian). Groenen PJ, Busink E, & van Wandelen M (1987) Determination of volatile nitrosamines in cheese and cured meat products. Model study of a temperature- and pH-dependent artefact formation phenomenon in alkaline medium. Z Lebensm.Unters Forsch, 185: 24-30. Grosjean D (1991) Atmospheric chemistry of toxic contaminants. 6. Nitrosamines: Dialkyl nitrosamines and nitrosomorpholine. J Air Waste Manage Assoc, 41: 306-311. Hamano T, Mitsuhashi Y, & Matsuki Y (1980) Improved gas chromatographic method for the quantitative determination of secondary amines as sulphonamides formed by reaction with benzene-sulphonyl chloride. J Chromatogr, 190: 462-465. Hamano T, Mitsuhashi Y, & Matsuki Y (1981) Glass capillary gas chromatography of secondary amines in foods with flame photometric detection after derivatization with benzenesulfonyl chloride. Agric Biol Chem, 45: 2237-2243. Hansen L, Akesson B, Sollenberg J, & Lundh T (1986) Determination of N-methylmorpholine in air samples from a polyurethane foam factory. Scand J Work Environ Health, 12: 66-69. Harbison RD, Marino DJ, Conaway CC, Rubin LF, & Gandy J (1989) Chronic morpholine exposure of rats. Fundam Appl Toxicol, 12: 491-507. Hassan SSM, Tadros FS, & Selig W (1985) Microdetermination of secondary aliphatic amines using a copper ion-selective electrode. Microchem J, 31: 1-6. Haworth S, Lawlor T, Mortelmans K, Speck W, & Zeiger E (1983) Salmonella mutagenicity test results for 250 chemicals. Environ Mutagen, Suppl 1: 3-142. Hazleton (1981) Final report: 9-day acute inhalation toxicity study in rats. Vienna, Virginia, Hazleton Laboratories America, Inc., 26 pp (Submitted to Texaco Chemical Company). Hecht SS & Morrison JB (1984) A sensitive method for detecting in vivo formation of N-nitrosomorpholine and its application to rats given low doses of morpholine and sodium nitrite. Cancer Res, 7: 2873-2877. Hecht SS & Young R (1981) Metabolic alpha-hydroxylation of N-nitrosomorpholine and 3,3,5,5-tetradeutero-N-nitrosomorpholine in the F344 rat. Cancer Res, 41: 5039-5043. Heilen G, Mercker HJ, Frank D, Reck RA, & Jäckh R (1989) [Amines, aliphatic.] In: [Ullmann's encyclopedia of industrial chemistry], 5th ed. Weinheim, VCH Verlagsgesellschaft, vol A2, pp 1-36 (in German). Hellman TM & Small FH (1974) Characterization of the odor properties of 101 petrochemicals using sensory methods. J Air Pollut Control Assoc, 24: 979-982. Hesselink PGM, Kerkenaar A, & Witholt B (1990) Inhibition of microbial cholesterol oxidases by dimethylmorpholines. J Steroid Biochem, 35: 107-113. Hibbs JB Jr (1992) Immunology: Overview of cytotoxic mechanisms and defence of the intracellular environment against microbes. In: Moncada S, Marletta MA, Hibbs JB Jr, Higgs EA ed. The biology of nitric oxide. London,d Chapel Hill, Portland Press, pp 201-206. Hoffmann D, Brunnemann KD, Adams JD, Rivenson A, & Hecht SS (1982) N-nitrosamines in tobacco carcinogenesis. In: Magee PN ed. Nitrosamines and human cancer. Cold Spring Harbor, New York, Cold Spring Harbor Laboratory, pp 211-225 (Banbury Report No. 12). Hoffmann D, Adams JD, Lisk D, Fisenne I, & Brunnemann KD (1987) Toxic and carcinogenic agents in dry and moist snuff. J Natl Cancer Inst, 79: 1281-1286. Hollett BA, Klemme JC, & Andjelkovich D (1982) Health hazard evaluation report HETA 81-045B-1216: Uniroyal, Inc., Mishawaka, Indiana. Cincinnati Ohio, National Institute for Occupational Safety and Health, 20 pp (PB84-183615). Hotchkiss JH & Vecchio AJ (1983) Analysis of direct contact paper and paperboard food packaging for N-nitrosomorpholine and morpholine. J Food Sci, 48: 240-242. IARC (1978) N-nitrosomorpholine. In: Some N-nitroso compounds. Lyon, International Agency for Research on Cancer, pp 263-280 (IARC Monographs on the Evaluation of the Carcinogenic Risk of Chemicals to Humans, Volume 17). IARC (1989) Morpholine. In: Some organic solvents, resin monomers and related compounds, pigments and occupational exposures in paint manufacture and painting. Lyon, International Agency for Research on Cancer, pp 199-213 (IARC Monographs on the Evaluation of Carcinogenic Risks to Humans, Volume 47). ILO (1991) Occupational exposure limits for airborne toxic substances, 3rd ed. Geneva, International Labour Office, pp 282-283 (Occupational Safety and Health Series No. 37). Inui N, Nishi Y, Taketomi M, Mori M, Yamamoto M, Yamada T, & Tanimura A (1979) Transplacental mutagenesis of products formed in the stomach of golden hamsters given sodium nitrite and morpholine. Int J Cancer, 24: 365-372. Iqbal ZM, Dahl K, & Epstein SE (1980) Role of nitrogen dioxide in the biosynthesis of nitrosamines in mice. Science, 207(4432): 1475-1476. Jakobi G, Löhr A, Schwuger MJ, Jung D, Fischer W, & Gloxhuber C (1983) [Washing agents.] In: [Ullmann's encyclopedia of industrial chemistry], 4th ed. Weinheim, VCH Verlagsgesellschaft, vol 24, pp 105, 138-139 (in German). Japan Chemical Week (1991) Speciality chemicals handbook, 4th ed. Tokyo, The Chemical Daily Co., Ltd, 8 pp. Jones WT & Kipling MD (1972) Glaucopsia - blue-grey vision. Br J Ind Med, 29: 460-461. Juhnke I & Lüdemann D (1978) [Results of the testing of 200 selected chemical compounds for acute fish toxicity with the Golden Orfe test.] Z Wasser Abwasser Forsch, 11: 161-164 (in German). Kamimura H, Enjoji Y, Sasaki H, Kawai R, Kaniwa H, Niigata K, & Kageyama S (1987) Disposition and metabolism of indeloxazine hydrochloride, a cerebral activator, in rats. Xenobiotica, 17(6): 645-658. Karweik DH & Meyers CH (1979) Spectrophotometric determination of secondary amines. Anal Chem, 51: 319-320. Katosova LD, Fomenko VN, & Davydenko LN (1991) Air pollution and industrial hygiene. Gig Tr Prof Zabol, 6: 35-36. Kleemann A & Engel J (1982) [Midodrin, Minaprin, Minocyclin; Trimethobenzamid, Trimethoprin, Trimetozin, Trimipramin, Tripelennamin.] In: [Pharmaceutical substances.] Stuttgart, New York, Georg Thieme Verlag, pp 602-603, 923-928 (in German). Knapp JS & Brown VR (1988) Morpholine biodegradation. Int Biodeterior, 24: 299-306. Knapp JS & Whytell AJ (1990) The biodegradation of morpholine in river water and activated sludge. Environ Pollut, 68: 67-79. Knapp JS, Callely AG, & Mainprize J (1982) The microbial degradation of morpholine. J Appl Bacteriol, 52: 5-13. Koga M & Akiyama T (1985) Determination of trace heterocyclic amines in water as their 1,2,-naphthoquinone derivatives by high performance liquid chromatography. Anal Sci, 1: 285-288. Kramer VC, Schnell DJ, & Nickerson KW (1983) Relative toxicity of organic solvents to Aedes aegypti larvae. J Invertebr Pathol, 42: 285-287. Kubis A, Witek R, Baran E, Jadach W, Matecka K, & Zaba A (1981) [ In vivo antimycotic effect of topically applied morpholine.] Pharmazie, 36: 429-431 (in German). Kubis A, Witek R, & Krutul H (1983) [Investigation on antibacterial action of some amines.] Pharmazie, 38: 488-489 (in German). Lakritz L & Kimoto W (1980) N-nitrosamines - contaminants in blood- collection tubes. Food Cosmet Toxicol, 18: 31-34. Lam HF & Van Stee EW (1978) A re-evaluation of the toxicity of morpholine. Fed Proc, 37: 679 (Abstract). Lamarre C, Gilbert R, & Gendron A (1989) Liquid chromatographic determination of morpholine and its thermal breakdown products in steam-water cycles at nuclear power plants. J Chromatogr, 467: 249-258. Lamb CB & Jenkins GF (1952) B.O.D. of synthetic organic chemicals. In: Proceedings of the 7th Industrial Waste Conference, Purdue University, West Lafayette, Indiana, 7-9 May 1952. Ann Arbor, Michigan, Ann Arbor Science Publishers, pp 326-339. Lathia D & Edeler A (1989) [Influence of sulfur-containing amino acids on in vitro nitrosamine formation under conditions similar to those found in the stomach.] Ernährungsphysiologie, 36: 21-24 (in German). Lathia D & Schellhöh B (1981) Inhibition of nitrosamine formation in vitro in presence of both ascorbic acid and sorbic acid. Recent Adv Clin Nutr, 1: 189-190. Lauharanta J (1992) Comparative efficacy and safety of amorolfine nail lacquer 2% versus 5% once weekly. Clin Exp Dermatol, 705: 41-43. Leach SA, Cook AR, Challis BC, Hill MJ, & Thompson MH (1987) Bacterially mediated N-nitrosation reactions and endogenous formation of N-nitroso compounds. In: Bartsch H, O`Neill IK, & Schulte-Hermann R ed. Relevance of N-nitroso compounds to human cancer: Exposures and mechanisms. Lyon, International Agency for Research on Cancer, pp 396-403 (IARC Scientific Publications No. 84). Leach SA, Mackerness CW, Hill MJ, & Thompson MH (1991) Inhibition of bacterially mediated N-nitrosation by ascorbate: Therapeutic and mechanistic considerations. In: O`Neill IK, Chen J, & Bartsch H ed. Relevance to human cancer of N-nitroso compounds, tobacco smoke and mycotoxins. Lyon, International Agency for Research on Cancer, pp 571-578 (IARC Scientific Publications No. 105). Leaf CD, Wishnok JS, & Tannenbaum SR (1991) Endogenous incorporation of nitric oxide from L-arginine into N-nitrosomorpholine stimulated by Escherichia coli lipopolysaccharide in the rat. Carcinogenesis, 224: 537-539. Lee SA (1982) Health hazard evaluation report HETA 82-156-1231: Sheller-Globe Corporation, Keokuk, Iowa. Cincinnati, Ohio, National Institute for Occupational Safety and Health, 8 pp (PB84-172915). Leenheers LH, Ravensberg JC, Kerstens HJ, & Jongen MJM (1992) Gas chromatographic determination of the pesticide dodemorph for assessment of occupational exposure. J Chromatogr Sci, 132: 228-232. Leo A, Hansch C, & Elkins D (1971) Partition coefficients and their uses. Chem Rev, 71: 525, 564. Le Therizien L, Heymans F, Redeuilh C, Godfroid J-J, & Busch N (1980) Partition coefficient additivity. 1. Morpholine and N-(N',N'-disubstituted amino acetyl)-arylamine series. Eur J Med Chem Chim Ther, 15: 311-316. Lide DR ed. (1990) CRC handbook of chemistry and physics, 71st ed. Boca Raton, Florida, CRC Press, pp 8-34. Litton Bionetics (1979a) Evaluation of morpholine in the in vitro transformation of BALB/3T3 cells assay. Kensington, Maryland, Litton Bionetics, Inc., 13 pp (Report submitted to Texaco Petrochemicals, Bellaire, Texas). Litton Bionetics (1979b) Evaluation of morpholine in the in vitro transformation of BALB/3T3 cells assay. Kensington, Maryland, Litton Bionetics, Inc., 13 pp Report submitted to Texaco, Inc., Beacon, New York). Litton Bionetics (1980) Mutagenicity evaluation of morpholine in the sister chromatid exchange assay with chinese hamster ovary (CHO) cells. Kensingtn, Maryland, Litton Bionetics, Inc., 10 pp (Report submitted to Texaco, Inc., Beacon, New York). Litton Bionetics (1982) Evaluation of morpholine in the in vitro transformation of Balb/3T3 cells with and without metabolic activation assay 80/490. Kensington, Maryland, Liotton Bionetics, Inc. 21 pp (Unpublished report submitted to BASF AG, Ludwigshafen). Liu RH, Conboy JJ, & Hotchkiss JH (1988) Nitrosation by nitro-nitroso derivatives of olefins: a potential mechanism for N-nitrosamine formation in fried bacon. J Agric Food Chem, 36: 984-987. Liu RH, Jacob JR, Tennant BC, & Hotchkiss JH (1992) Nitrite and nitrosamine synthesis by hepatocytes isolated from normal woodchucks. Cancer Res, 52: 4139-4143. Lodén M, Larsson R, Häggqvist I, & Karlsson N (1985) [The dermal irritancy/corrosion of 20 compounds in aqueous solutions.] Umea, Sweden, Försvarets Forskningsanstalt, 76 pp (FOA Report No. E/40023) (in Swedish with English summary). Loeppky RN, Tomasik W, & Kerrick BE (1987) Nitroso transfer from alpha-nitrosamino aldehydes: implications for carcinogenesis. Carcinogenesis, 8(7): 941-946. London MA & Lee S (1987) Health hazard evaluation report HETA 85-003-1834: BF Goodrich, Woodburn, Indiana. Cincinnati, Ohio, National Institute for Occupational Safety and Health, 27 pp (PB88-162672/XAD). McCain JC & Peck JM Jr (1976) The toxicity of selected chemicals used in power generating stations to Hawaiian fishes NOAA. Washington, DC, US Department of Commerce, National Technical Information Service, 23 pp (NTIS No PB262437). McGlothlin JD (1980) Health hazard evaluation report HETA 80-67-749: Firestone Fire and Rubber Company, Akron, Ohio. Cincinnati, Ohio, National Institute for Occupational Safety and Health, 18 pp (PB82-103144). McGlothlin J & Wilcox T (1984) Health hazard evaluation report HETA 79-109-1538: Kelly Springfield Tire Company, Cumberland, Maryland. Cincinnati, Ohio, National Institute for Occupational Safety and Health, 50 pp (PB85-244424). Mackerness CW, Leach SA, Thompson MH, & Hill MJ (1989) The inhibition of bacterially mediated N-nitrosation by vitamin C: relevance to the inhibition of endogenous N-nitrosation in the achlorhydric stomach. Carcinogenesis, 10(2): 397-399. Malaiyandi M, Thomas GH, & Meek ME (1979) Sampling and analysis of some corrosion inhibiting amines in steam condensates. J Environ Sci Health, A14: 609-627. Maller RK & Heidelberger C (1957) Studies on OPSPA. IV. Metabolism of OPSPA in the rat and human. Cancer Res, 17: 296-301. Mannsville Chemical Products (1981) Chemical products synopsis: Morpholine. Cortland, New York, Mannsville Chemical Products Corporation, 2 pp. Mastromatteo E (1965) Recent occupational health experiences in Ontario. J Occup Med, 702: 502-511. Mazure N (1993) Etude de la biodégradation de la morpholine par une culture pure, Mycobacterium aurum, et des cultures mixtes Pseudomonas. Compiègne, France, University of Technology (Thesis). Meiners AF, Gadberry H, Carson BL, Owens HP, & Lapp TW (1980) Volatile corrosion inhibitors and boiler water additives: potential for nitrosamine formation. Washington, DC, US Environmental Protection Agency, Office of Pesticides and Toxic Substances, 99 pp (Report submitted by the Midwest Research Institute, Kansas City, Missouri) (NTIS/PB80-221105). Mercer EI (1991) Morpholine antifungals and their mode of action. Biochem Soc Trans, 19: 788-793. Migukina NV (1973) [Evaluation of the danger [toxicity] of morpholine by chronic exposure.] Toksikol Nov Prom Chim Veshchestv, 13: 92-100 (in Russian). Millington LA, Goulding KH, & Adams N (1988) The influence of growth medium composition on the toxicity of chemicals to algae. Water Res, 22: 1593-1597. Mills EJ & Stack VT (1953) Biological oxidation of synthetic organic chemicals. In: Proceedings of the 8th Industrial Waste Conference, Purdue University, West Lafayette, Indiana, 4-6 May 1953. Ann Arbor, Michigan, Ann Arbor Science Publishers, Inc., pp 492-517. Mills EJ & Stack VT (1955) Suggested procedure for evaluation of biological oxidation of organic chemicals. Sewage Ind Wastes, 27: 1061-1064. Mirvish SS (1975) Formation of N-nitroso compounds: chemistry, kinetics, and in vivo occurrence. Toxicol Appl Pharmacol, 31: 325-351. Mirvish SS, Wallcave L, Eagen M, & Shubik P (1972) Ascorbate-nitrite reaction: possible means of blocking the formation of carcinogenic N-nitroso compounds. Science, 177: 65-68. Mirvish SS, Cardesa A, Wallcave L, & Shubik P (1975) Induction of mouse lung adenomas by amines or ureas plus nitrite and by N-nitroso compounds: effect of ascorbate, gallic acid, thiocyanate, and caffeine. J Natl Cancer Inst, 55: 633-636. Mirvish SS, Pelfrene AF, Garcia H, & Shubik P (1976) Effect of sodium ascorbate on tumor induction in rats treated with morpholine and sodium nitrate, and with nitrosomorpholine. Cancer Lett, 2: 101-108. Mirvish SS, Ramm MD, Sams JP, & Babcock DM (1988) Nitrosamine formation from amines applied to the skin of mice after and before exposure to nitrogen dioxide. Cancer Res, 48: 1095-1099. Mjos K (1978) Cyclic amines. In: Kirk-Othmer encyclopedia of chemical technology, 3rd ed. New York, John Wiley and Sons, vol 2, pp 295-308. Moriyasu M, Endo M, Hashimoto Y, & Koeda T (1984) High-performance liquid chromatographic determination of organic substances by metal chelate derivatization. II. Microdetermination of methamphetamine and amphetamine. Chem Pharm Bull, 32: 600-608. Newberne PM & Shank RC (1973) Induction of liver and lung tumours in rats by the simultaneous administration of sodium nitrite and morpholine. Food Cosmet Toxicol, 11: 819-825. NIOSH (1977) Manual of analytical methods, 2nd ed. Cincinnati, Ohio, National Institute for Occupational Safety and Health, vol 3, pp S150/1-S150/9. NIOSH (1988) National occupational exposure survey as of 16.12.1988: Morpholine. Cincinnati, Ohio, National Institute of Occupational Safety and Health, 1 p. Norkus EP, Boyle S, Kuenzig WA, & Mergens WJ (1984) Formation of N-nitrosomorpholine in mice treated with morpholine and exposed to nitrogen oxide. Carcinogenesis, 5: 549-554. Norkus EP, Kuenzig WA, Chau J, Mergens WJ, & Conney AH (1986) Inhibitory effect of alpha-tocopherol on the formation of nitrosomorpholine in mice treated with morpholine and exposed to nitrogen dioxide. Carcinogenesis, 7: 357-360. NRC (1981) Selected aliphatic amines and related compounds: an assessment of the biological and environmental effects. Washington, DC, National Research Council, Board on Toxicology and Environmental Health Hazards (Report prepared for the US Environmental Protection Agency, Washington) (NTIS/PB83-133066). OECD (1981a) OECD guidelines for testing of chemicals. Section 3. Degradation and accumulation: Ready biodegradability. 301 E - Modified OECD screening test. Paris, Organisation for Economic Co-operation and Development. OECD (1981b) OECD guidelines for testing of chemicals. Section 3. Degradation and accumulation: Inherent biodegradability. 302 B - Modified Zahn-Wellens test. Paris, Organisation for Economic Co-operation and Development. OECD (1984) Guidelines for testing of chemicals No 202, Part I: Daphnia sp, acute immobilisation test. Paris, Organisation for Economic Co-operation and Development. O'Donnell CM, Edwards C, & Ware J (1988) Nitrosamine formation by clinical isolates of enteric bacteria. FEMS Microbiol Lett, 51: 193-197. Ohnishi T (1984) [Morpholine. Studies on mutagenicity of the food additive morpholine (fatty acid salt).] Nippon Eiseigaku Zasski, 39: 729-745 (in Japanese with English summary). Ohnishi T, Kubota M, Okada A, & Tonami K (1983) [Residual survey investigation and removal efficiency by washing with kitchen detergent of food additive morpholine.] Hokuriku Koshu Eisei Gakkaishi, 10: 63-67 (in Japanese with English summary). Österdahl B-G & Slorach SA (1983) Volatile N-nitrosamines in snuff and chewing tobacco on the Swedish market. Food Chem Toxicol, 21: 759-762. Pensabene JW & Fiddler W (1988) Food additives. Determination of volatile N-nitrosamines in Frankfurters containing minced fish and surimi. J Assoc Off Anal Chem, 71: 839-843. Perez A, Fernandez SI, Garcia-Roche MO, De Las Cagigas A, Castillo A, Fonseca G, & Herrera M (1990) Mutagenicity of N-nitrosomorpholine biosynthesized from morpholine in the presence of nitrate and its inhibition by ascorbic acid. Nahrung, 34: 661-664. Postlethwait EM & Mustafa MG (1983) Formation of N-nitrosamine in isolated rat lungs during nitrogen dioxide ventilation. Carcinogenesis, 4: 777-778. Reinel D & Clarke C (1992) Comparative efficacy and safety of amorolfine nail lacquer 5% in onychomycosis, once-weekly versus twice-weekly. Clin Exp Dermatol, 705: 44-49. Reinhardt CF & Brittelli MR (1981) Heterocyclic and miscellaneous nitrogen compounds. In: Clayton GD & Clayton FE ed. Patty's industrial hygiene and toxicology: Vol 2A. Toxicology. New York, John Wiley and Sons, pp 2671-2822. Rekka E, Retsas S, Demopoulos VJ, & Kourounakis PN (1990) Lipophilicity of some substituted morpholine derivatives synthesized as potential antinociceptive agents. Arch Pharmacol, 323: 53-56. Reynolds T (1989) Comparative effects of heterocyclic compounds on inhibition of lettuce fruit germination. J Exp Bot, 40: 391-404. Rhodes C & Case DE (1977) Non-metabolite residues of ICI 58,834 (viloxazine). Studies with (14C)morpholine, (14C)ethanolamine and (14C)glyoxylate. Xenobiotica, 7: 112. Richardson ML, Webb KS, & Gough TA (1980) The detection of some N-nitrosamines in the water cycle. Ecotoxicol Environ Saf, 4: 207-212. Ringenburg V & Fajen JM (1980) Survey for N-nitroso compounds at B.F. Goodrich, Woodburn, Indiana, December 12, 1979. Cincinnati, Ohio, National Institute for Occupational Safety and Health, 11 pp (PB88-250477/XAD). Rounbehler DP & Fine DH (1982) Specific detection of amines and other nitrogen-containing compounds with a modified TEA analyzer. In: Bartsch H, O'Neill IK, Castegnaro M, & Okada M ed. N-nitroso compounds: Occurrence and biological effects. Lyon, International Agency for Research on Cancer, pp 209-219 (IARC Scientific Publications No. 41). Rounbehler DP & Fajen JM (1983) N-nitroso compounds in the factory environment. National Cincinnati, Ohio, National Institute for Occupational Safety and Health, 228 pp (PB84-145770). Rounbehler DP, Reisch J, & Fine DH (1980) Nitrosamines in new motor- cars. Food Cosmet Toxicol, 18: 147-151. Sander J & Bürkle G (1969) [Induction of malignant tumours in rats by simultaneous feeding of nitrite and secondary amines.] Z Krebsforsch, 73: 54-66 (in German). Sander J, Schweinsberg F, & Menz H-P (1968) [Studies on the formation of carcinogenic nitrosamines in the stomach.] Hoppe-Seyler's Z Physiol Chem, 349: 1691-1697 (in German). Savolainen H & Rosenberg C (1983) Morpholine vapour inhalation and interactions of simultaneous nitrite intake. Biochemical effects on rat spinal cord axons and skeletal muscle. Arch Toxicol, 53: 143-150. Schröder E, Rufer C, & Schmiechen R (1982) [Nitrofuran.] In: [Pharmaceutical Chemistry.] Stuttgart, New York, Georg Thieme Verlag, pp 858-863 (in German). Schuster RH, Nabholz F, & Gmünder M (1990) [The inhibition of the formation of N-nitrosamines: Part 1. The situation and the effect of alpha-tocopherol.] Kautschuk Gummi Kunstst, 43: 95-106 (in German). Sen NP & Baddoo PA (1986) Origin of N-nitrosomorpholine contamination in margarine. J Food Sci, 51: 216-217. Sen NP & Baddoo PA (1989) An investigation on the possible presence of morpholine and N-nitrosomorpholine in wax-coated apples. J Food Saf, 9: 183-191. Sen NP, Seaman S, Clarkson S, Garrod F, & Lalonde P (1984) Volatile N-nitrosamines in baby bottle rubber nipples and pacifiers. Analysis, occurrence and migration. In: O'Neill IK, vn Borstel RC, Miller CT, Long J, & Bartsch H ed. N-nitroso compounds: Occurrence, biological effects and relevance to human cancer. Lyon, International Agency for Research on Cancer, pp 51-57 (IARC Scientific Publications No. 57). Sen NP, Kushwaha SC, Seaman SW, & Clarkson SG (1985) Nitrosamines in baby bottle nipples and pacifiers: occurrence, migration, and effect of infant formulas and fruit juices on in vitro formation of nitrosamines under simulated gastric conditions. J Agric Food Chem, 33: 428-433. Shank RC & Newberne PM (1976) Dose-response study of the carcinogenicity of dietary sodium nitrite and morpholine in rats and hamsters. Food Cosmet Toxicol, 14: 1-8. Shea TE Jr (1939) The acute and sub-acute toxicity of morpholine. J Ind Hyg Toxicol, 21: 236-245. Shenoy NR & Choughuley ASU (1989) Effect of certain plant phenolics on nitrosamine formation. J Agric Food Chem, 37: 721-725. Shenoy NR & Choughuley ASU (1992) Inhibitory effect of diet related sulphydryl compounds on the formation of carcinogenic nitrosamines. Cancer Lett, 67: 227-232. Shibata M-A, Kurata Y, Tamano S, Ogiso T, Fukushima S, & Ito N (1987a) 13-week subchronic toxicity study with morpholine oleic acid salt administered to B6C3F1 mice. J Toxicol Environ Health, 22: 187-194. Shibata M-A, Kurata Y, Ogiso T, Tamano S, Fukushima S, & Ito N (1987b) Combined chronic toxicity and carcinogenicity studies of morpholine oleic acid salt in B6C3F1 mice. Food Chem Toxicol, 25: 569-574. Simon P & Lemacon C (1987) Determination of aliphatic primary and secondary amines and polyamines in air by high-performance liquid chromatography. Anal Chem, 59: 480-484. Singer GM & Lijinsky W (1976a) Naturally occurring nitrosatable compounds. I. Secondary amines in foodstuffs. J Agric Food Chem, 24: 550-553. Singer GM & Lijinsky W (1976b) Naturally occurring nitrosatable amines. II Secondary amines in tobacco and cigarette smoke condensate. J Agric Food Chem, 24: 553-555. Singer SS (1980) Transnitrosation by nitrosamines and nitrosoureas. In: Walker EA, Griciute L, Castegnaro M, & Börzsönyi M ed. N-nitroso compounds: Analysis, formation and occurrence. Lyon, International Agency for Research on Cancer, pp 111-117 (IARC Scientific Publications No. 31). Sittig M (1985) Handbook of toxic and hazardous chemicals and carcinogens, 2nd ed. Park Ridge, Noyes Publications, pp 626-627. Smith JH, Bomberger DC Jr, & Haynes DL (1980) Prediction of the volatilization rates of high-volatility chemicals from natural water bodies. Environ Sci Technol, 14: 1332-1337. Smyth HF Jr, Carpenter CP, Weil CS, & Pozzani UC (1954) Range-finding toxicity data. Arch Ind Hyg Occup Med, 10: 61-68. Sohn OS, Fiala E, Conaway CC, & Weisburger JH (1982a) Separation of morpholine and some of its metabolites by high-performance liquid chromatography. J Chromatogr, 242: 374-380. Sohn OS, Fiala ES, Conaway CC, & Weisburger JH (1982b) Metabolism and disposition of morpholine in the rat, hamster and guinea pig. Toxicol Appl Pharmacol, 64: 486-491. Sollenberg J & Hansen L (1987) Isotachophoretic determination of amines from workroom air. J Chromatogr, 390: 133-140. Spiegelhalder B (1983) [Nitrosamines and rubber.] In: Preussmann R ed. [The nitrosamine problem.] Weinheim, VCH Verlagsgesellschaft, pp 235-244 (in German). Spiegelhalder B & Preussmann R (1982) Nitrosamines and rubber. In: Bartsch H, O'Neill IK, Castegnaro M, & Okada M ed. N-nitroso compounds: Occurrence and biological effects. Lyon, International Agency for Research on Cancer, pp 231-2439 (IARC Scientific Publications No. 41). Spiegelhalder B & Preussmann R (1984) Contamination of toiletries and cosmetic products with volatile and nonvolatile N-nitroso carcinogens. J Cancer Res Clin Oncol, 108: 160-163. Spies RB, Andresen BD, & Rice DW Jr (1987) Benzthiazoles in estuarine sediments as indicators of street runoff. Nature (Lond), 327: 697-699. SRI (1990) Directory of chemical producers, Western Europe: Morpholine. Menlo Park, California, SRI International, vol 2, p 1563. Stewart BW & Farber E (1973) Strand breakage in rat liver DNA and its repair following administration of cyclic nitrosamines. Cancer Res, 33: 3209-3215. Strotmann UJ, Weberruss U, & Bias WR (1993) Degradation of morpholine in several biodegradation tests and in wastewater treatment plants. Chemosphere, 75: 1729-1742. Subrahmanyam PVR, Khadakkar SN, Chakrabarti T, & Sundaresan BB (1983) Wastewater-treatment of a phthalate plasticizer, ethanolamine and morpholine manufacturing plant: a case study. Proc Ind Waste Conf, 37: 13-20. Suzuki K & Mitsuoka T (1984) N-nitrosamine formation by intestinal bacteria. In: O'Neill IK, vn Borstel RC, Miller CT, Long J, & Bartsch H ed. N-nitroso compounds: Occurrence, biological effects and relevance to human cancer. Lyon, International Agency for Research on Cancer, pp 275-281 (IARC Scientific Publications No. 57). Swain A, Waterhouse KV, Venables WA, Callely AG, & Lowe SE (1991) Biochemical studies of morpholine catabolism by an environmental mycobacterium. Appl Microbiol Biotechnol, 29: 110-114. Swope HG & Kenna M (1950) Effect of organic compounds on biochemical oxygen demand. Sew Ind Wastes Eng, 21: 467-468. Taft RM & Stroman RE (1979) Health hazard evaluation report HETA 78-131-586: Goodyear Tire and Rubber Company, Niagara Falls, New York. Cincinnati Ohio, National Institute of Occupational Safety and Health, Hazard Evaluations and Technical Assistance Branch, 13 pp (NTIS/PB80-196736). Takezawa J & Lam HF (1978) Toxic effect of morpholine on rat lungs. Fed Proc, 37: 247 (Abstract). Tanaka M, Okada Z, Mihashi K, & Seiko Y (1968) Industrial waste treatment by activated sludge. XV. Treatment of waste from an organic vulcanization accelerator producing plant. Kogyo Gijutsuin Hakko Kenkyusho Kenkyu Hokoku, 33: 19-29. Tanaka A, Tokieda T, Nambaru S, Osawa M, & Yamaha T (1978) Excretion and distribution of morpholine salts in rats. J Food Hyg Soc, 19: 329-334. Tannenbaum SR, Archer MC, Wishnok JS, & Bishop WW (1978) Nitrosamine formation in human saliva. J Natl Cancer Inst, 60(2): 251-253. Tatsumi K, Kitamura S, Yoshimura Y, Tanaka S, Hashimoto K, & Igarashi T (1975) The metabolism of phenyl o-(2-N-morpholinoethoxy)-phenyl ether hydrochloride in the rabbit and rat. Xenobiotica, 5(6): 377-388. Taylor R & Son PN (1982) Rubber chemicals. In: Kirk-Othmer encyclopedia of chemical technology, 3rd ed. New York, John Wiley and Sons, vol 20, pp 337-364. Texaco (1979a) Mutagenicity evaluation of morpholine in the Ames salmonella/microsome plate test. Bellaire, Texas, Texaco Petrochemicals, 8 pp. Texaco (1979b) Mutagenicity evaluation of morpholine in the mouse lymphoma forward mutation assay. Bellaire, Texas, Texaco Petrochemicals, 15 pp. Texaco (1986) Texaco product brochure - Morpholine. Austin, Texas, Texaco Chemical Company, Research and Technical Services, 29 pp. Tölgyessy P, Kollár M, Vanco D, & Piatrik M (1986) Bio-degradability of morpholine. J Radioanal Nucl Chem Lett, 107: 291-295. Tombropoulos EG (1979) Micromethod for the gas chromatographic determination of morpholine in biological tissues and fluids. J Chromatogr, 164: 95-99. Tombropoulos EG, Koo JO, Gibson W, & Hook GER (1983) Induction by morpholine of lysosomal alpha-mannosidase and acid phosphatase in rabbit alveolar macrophages in vivo and in vitro. Toxicol Appl Pharmacol, 70: 1-6. TRGS (1989) [Technical regulations for dangerous chemicals: Nitrosamine.] Cologne, Carl Heymanns Verlag KG, 13 pp (TRGS 552) (in German). Tricker AR & Preussmann R (1991) Occurrence of and exposure to N-nitroso compounds in tobacco. In: O'Neill IK, Chen J, & Bartsch H ed. Relevance to human cancer of N-nitroso compounds, tobacco smoke and mycotoxins. Lyon, International Agency for Research on Cancer, pp 493-495 (IARC Scientific Publications No. 105). UBA (1990) Calculation of log POW with the Program CLOGP (data sheet). Berlin, Environment Office, 2 pp. US FDA (1984a) Code of federal regulations (April 1, 1984) - Title 21, Part 178.3300: Corrosion inhibitors used for steel or tinplate. Washington, DC, US Food and Drug Administration, p 312. US FDA (1984b) Code of federal regulations (April 1, 1984) - Title 21, Part 176.210: Defoaming agents used in the manufacture of paper and paperboard. Washington, DC, US Food and Drug Administration, pp 192-193. US FDA (1984c) Code of federal regulations (April 1, 1984) - Title 21, Part 175.105: Substances for use only as components of adhesives. Washington, DC, US Food and Drug Administration, pp 124-137. US FDA (1984d) Code of federal regulations - Title 21, Part 178.310: Animal glue. Washington, DC, US Food and Drug Administration, p 308. US FDA (1984e) Code of federal regulations - Title 21, Part 173.310: Boiler water additives. Washington, DC, US Food and Drug Administration, pp 115-118. US FDA (1986) Cosmetic product formulation data: Ingredients used in each product category. Washington, DC, US Food and Drug Administration. US FDA (1988) Code of federal regulations - Title 21, Part 172.235: Morpholine. Washington, DC, US Food and Drug Administration, pp 33-35. Van Stee EW, Wynns PC, & Moorman MP (1981) Distribution and disposition of morpholine in the rabbit. Toxicology, 20: 53-60. Wang X & Suskind RR (1988) Comparative studies of the sensitization potential of morpholine, 2-mercaptobenzothiazole and 2 of their derivatives in guinea pigs. Contact Dermatitis, 19: 11-15. Wang X & Tabor MW (1988) Studies of the reactivity of morpholine, 2-mercaptobenzothiazole and 2 of their derivatives with selected amino acids. Contact Dermatitis, 19: 16-21. Wang H & Wu Y (1991) Inhibitory effect of Chinese tea on N-nitrosation in vitro and in vivo. In: O'Neill IK, Chen J, & Bartsch H ed. Relevance to human cancer of N-nitroso compounds, tobacco smoke and mycotoxins. Lyon, International Agency for Research on Cancer, pp 546-548 (IARC Scientific Publications No. 105). Wellens H (1982) [Comparison of the sensitivity of Brachydanio rerio und Leuciscus idus by testing the fish toxicity of chemicals and wastewaters.] Z Wasser Abwasser Forsch, 2: 49-52 (in German). Westin JB, Castegnaro MJ-J, & Friesen MD (1987) N-nitrosamines and nitrosatable amines, potential precursors of N-nitramines, in children's pacifiers and baby-bottle nipples. Environ Res, 43: 126-134. Wishnok JS & Tannenbaum SE (1976) Formation of cyanamides from secondary amines in human saliva. Science, 191: 1179-1180. Wishnok JS & Tannenbaum SR (1977) An unknown salivary morpholine metabolite. Anal Chem, 49: 715a-716a, 718a. Yurchenko VA, Ilnitskii AP, Ermilow VB, Mistakopulo GM, & Nechipai AM (1990) [Investigation of mutagenic action of natural zeolite and chrysotile-asbest dusts.] Eksp Onkol, 12: 24-26 (in Russian with English summary). Zaeva GN, Timofievskaya LA, Bazarova LA, & Migukina NV (1968) [Comparative toxicity of a group of cyclic imino-compounds.] Toksikol Nov Prom Chim Veshchestv, 10: 25-35 (in Russian). Ziebarth D (1973) N-nitrosation of secondary amines and particularly of drugs, in buffer solutions and human gastric juice. In: Bogovski P & Walker EA ed. N-nitroso compounds in the environment. Lyon, International Agency for Research on Cancer, pp 137-141 (IARC Scientific Publications No. 9). Ziebarth D. (1974) [Investigations into the nitrosation of secondary amines in buffer solutions and in human gastric juice.] Arch Geschwulstforsch, 43: 42-41 (in German). RESUME ET EVALUATION, CONCLUSIONS ET RECOMMANDATIONS 1. Propriétés physiques et chimiques La morpholine (1-oxa-4-azacyclohexane) est un liquide incolore, huileux, hygroscopique et volatil qui possède l'odeur de poisson caractéristique des amines. Elle est entièrement miscible à l'eau, ainsi qu'à de nombreux solvants organiques, mais sa solubilité est limitée dans les solutions aqueuses alcalines. C'est une base, dont le pKa de l'acide conjugué est de 8,33. Il s'ensuit que son coefficient de partage entre l'octanol et l'eau dépend du pH (log Pow = -2,55 à pH 7 et -0.84 à pH 10 et à 35°C). La tension de vapeur des solutions aqueuses de morpholine est très proche de celle de l'eau. La morpholine peut entrer en réaction de diverses manières. Chimiquement, elle se comporte comme une amine secondaire. Dans les conditions environnementales et physiologiques, la N-nitrosomorpholine (NMOR), dont le pouvoir cancérogène chez l'animal est prouvé, se forme par réaction entre des solutions de nitrite ou des oxydes d'azote gazeux et des solutions diluées de morpholine. La concentration en oxyde d'azote (NO) peut être importante pour la nitrosation. Les conditions de nitrosation, en particulier la valeur du pH, jouent un rôle important. 2. Méthodes d'analyse On peut doser la morpholine par chromatographie en phase gazeuse avec des colonnes à remplissage ou des colonnes capillaires, par chromatographie liquide à haute performance (HPLC) et par chromatographie ionique. Les détecteurs utilisés sont les détecteurs à ionisation de flamme, les détecteurs à photométrie de flamme, les détecteurs sélectifs d'azote, les détecteurs thermiques pour la chromatographie en phase gazeuse et, pour la chromatographie en phase liquide à haute performance, les détecteurs à UV et les détecteurs thermiques. Pour le dosage des traces, il faut passer par un dérivé. La méthode de choix sur le plan de la sensibilité semble être la chromatographie en phase gazeuse avec détection thermique après transformation de la morpholine en NMOR (limite de détection: 2 à 3 µg/kg dans diverses matrices). Dans l'air, de faibles concentrations de morpholine peuvent être mesurées par chromatographie en phase gazeuse avec un détecteur sélectif d'azote. 3. Sources d'exposition humaine et environnementale On estime qu'environ 25 000 tonnes de morpholine sont produites chaque année, toutefois on ne connaît pas dans le détail la production de certains pays. Le principal procédé de production est, semble-t-il, la réaction du diéthylène-glycol sur l'ammoniaque en présence d'hydrogène et de catalyseurs. La morpholine est un produit chimique à tout faire mais on n'en connaît pas tous les usages. Il joue un rôle important comme intermédiaire dans l'industrie du caoutchouc, comme inhibiteur de la corrosion ainsi que pour la synthèse d'éclaircissants optiques, d'agents pour la protection des récoltes, de colorants et de médicaments. La morpholine est utilisée comme solvant pour les dérivés organiques les plus divers, comme par exemple les résines, les colorants et les cires. On peut également l'utiliser comme catalyseur. On utilise encore de la morpholine dans certains pays pour la confection de produits de toilette et de cosmétiques. Dans d'autres, elle entre dans la composition d'additifs alimentaires, soit directement, soit indirectement. Lorsqu'il y a exposition humaine ou environnementale, elle peut être due soit à des émissions de gaz, soit à des décharges de solutions aqueuses, à moins qu'elle ne se produise directement lors de l'utilisation de certains produits contenant de la morpholine, comme par exemple des produits cosmétiques ou des cires. Le gros des émissions et des décharges trouve probablement son origine dans la fabrication et l'utilisation de la morpholine dans l'industrie chimique (notamment lors de la production et de l'utilisation des produits destinés à l'industrie du caoutchouc) ainsi que dans l'application de la morpholine comme agent anti-corrosion. On a trouvé de la morpholine dans des denrées alimentaires très variées ainsi que dans le tabac. Il est possible que cette présence s'explique par la migration, dans la denrée alimentaire, de la morpholine incorporée à l'enduit qui recouvre les fruits ou l'emballage, mais dans un certain nombre de cas, on ignore d'où la morpholine peut provenir. 4. Transport, distribution et transformation dans l'environnement La morpholine est chimiquement stable dans la biosphère bien qu'elle puisse être soumise à une nitrosation chimique ou biologique qui la transforme en NMOR. La morpholine est intrinsèquement biodégradable. On a vérifié cette propriété dans des conditions reproduisant celles qui règnent dans les usines de traitement des boues activées. Cependant, dans des conditions de non adaptation, la morpholine n'est probablement pas décomposée en proportion importante. Le temps de rétention moyen sur les matières solides présentes dans les usines de traitement des boues activées est d'une importance cruciale et il doit dépasser les 8 jours pour que l'on puisse obtenir une bonne dégradation de la morpholine. Les données relatives à la bioaccumulation de la morpholine par les organismes aquatiques et terrestres sont insuffisantes. D'après la valeur du coefficient de partage entre le n-octanol et l'eau (log Pow = -2,55 à pH 7), on peut s'attendre à ce qu'il n'y ait aucune bioaccumulation. Comme la morpholine est un produit chimique industriel important dont les applications sont variées, il faut s'attendre à retrouver ce composé ou ses dérivés dans un grand nombre d'effluents industriels. De plus, étant donné qu'on l'utilise comme inhibiteur de la corrosion dans l'eau des chaudières, on va le retrouver dans les eaux usées de ces chaudières, et en particulier les eaux usées provenant de certaines centrales thermiques. Comme la morpholine entre également dans la composition des additifs du caoutchouc, on va en retrouver également, en quantité mal définie, dans l'hydrosphère et la géosphère, par suite de l'usure des pneus et du rejet des pneus usés. La morpholine peut pénétrer dans l'environnement en se volatilisant à partir des encaustiques et des cirages dont elle est un constituant. Elle est rapidement captée par l'humidité. C'est donc principalement dans l'hydrosphère qu'elle devrait s'accumuler, mais les données limitées dont on dispose incitent à penser que la morpholine ne s'accumule pas dans ce compartiment. La meilleure méthode pour éliminer la morpholine concentrée est l'incinération, toutefois il peut être nécessaire de veiller aux émissions d'oxydes d'azote afin de respecter les normes de protection de l'environnement. En ce qui concerne les effluents aqueux, le traitement des boues activées est suffisant, à la condition toutefois que l'usine fasse l'objet d'un contrôle rigoureux (voir ci-dessus). 5. Concentrations dans l'environnement et exposition humaine On ne dispose d'aucune donnée sur la concentration de la morpholine dans l'air ambiant ainsi que dans l'air intérieur des immeubles résidentiels ou encore dans l'eau de boisson. Si l'on possède quelques données sur sa présence dans les eaux naturelles, on n'en a en revanche aucune sur sa présence dans le sol. D'après les données disponibles, c'est les denrées alimentaires qui constituent la principale source d'exposition à la morpholine de la population générale, les produits alimentaires pouvant être contaminés par suite d'un traitement conservateur direct des fruits à l'aide de cires contenant de la morpholine, lors du traitement à la vapeur au cours de la préparation et enfin par l'utilisation de matériaux d'emballage dans la composition desquels entre la morpholine. Cependant on ne dispose que de données quantitatives limitées sur la contamination des denrées alimentaires par la morpholine et la NMOR. Par exemple, dans les produits laitiers pré- emballés, les valeurs mesurées vont de 5 à 77 µg/kg pour la morpholine et jusqu'à 3,3 µg/kg pour la NMOR. En général, les mesures effectuées ont montré que la teneur en morpholine de divers échantillons de produits alimentaires (poisson, viande, produits d'origine végétale, boissons) ne dépassait généralement pas 1 mg/kg. Des valeurs plus élevées (jusqu'à 71 mg/kg) ont été relevées au Japon dans des agrumes. Une enquête effectuée en Italie n'a pas permis de repérer la présence de NMOR dans diverses denrées alimentaires au seuil de détection de 0,3 µg/kg. Les données existantes ne permettent pas d'évaluer l'apport de morpholine et de NMOR par la voie alimentaire. On a trouvé de la morpholine dans le tabac de cigarette à la concentration de 0,3 mg/kg ainsi que dans le tabac à priser et à chiquer à des concentrations allant jusqu'à 4,0 mg/kg. Il est arrivé que l'on trouve dans du tabac à priser des concentrations de morpholine allant jusqu'à 0,7 mg/kg. La présence de ce produit était probablement la conséquence de l'utilisation de cires à base de morpholine pour le conditionnement de ce tabac. De la NMOR a été mise en évidence dans certains produits de toilette et dans des cosmétiques, par exemple des shampoings, du rimmel ainsi que dans des articles en caoutchouc comme les sucettes pour bébés et les tétines pour biberon, à des concentrations allant jusqu'à 3,5 mg/kg. Il peut y avoir exposition professionnelle à la morpholine dans diverses industries. On ne possède guère de données sur l'exposition des travailleurs à la morpholine. Toutes les valeurs signalées sont inférieures à 3 mg/m3. On a signalé des cas d'exposition professionnelle à la NMOR dans l'industrie du caoutchouc où des concentrations allant jusqu'à 250 µg/m3 ont été mesurées. Les données actuellement disponibles permettent de se faire une idée du risque d'exposition humaine mais elles ne permettent pas une estimation précise de l'intensité de l'exposition à la morpholine et la NMOR de la population générale et des diverses catégories professionnelles. 6. Cinétique et métabolisme chez les animaux de laboratoire et l'homme Après exposition par voie orale, cutanée ou respiratoire, il y a absorption de la morpholine. Chez le rat, après administration par voie orale ou intraveineuse, la morpholine se répartit rapidement dans l'organisme, atteignant sa concentration la plus élevée dans l'intestin et les muscles. Chez le lapin, après exposition par voie intraveineuse ou respiratoire, la morpholine se répartit de préférence dans les reins, les concentrations étant plus faibles dans les poumons, le foie et le sang. La morpholine ne se fixe pas de manière importante aux protéines plasmatiques. Sa demi-vie dans le plasma est de 115 minutes chez le rat, de 120 minutes chez le hamster et de 300 minutes chez le cobaye. La morpholine est principalement excrétée sans modification par les reins chez un certain nombre d'espèces. Un jour après l'administration, on a constaté que 70 à 90% de la morpholine se retrouvaient dans les urines. La neutralisation en augmente la vitesse d'excrétion. Une faible proportion de la morpholine est excrétée dans l'air expiré et dans les matières fécales. Les études effectuées sur des rats, des souris, des hamsters et des lapins indiquent que la morpholine s'élimine presque complètement sans métabolisation. Chez le cobaye, il peut y avoir une N-méthylation suivie d'une N-oxydation, la dose administrée pouvant être métabolisée jusqu'à hauteur de 20%. En présence de nitrites, la morpholine peut être transformée en NMOR, tant in vitro qu' in vivo. On a constaté, en administrant de la morpholine à des rats avec des nitrites, que celle-ci pouvait être nitrosée dans la proportion de 0 à 12%, selon la dose. Le taux de nitrosation peut augmenter par le fait d'une immuno- stimulation comportant l'activation des macrophages. 7. Effets sur les mammifères de laboratoire et les systèmes d'épreuve in vitro Après administration de morpholine par voie orale à des rats et à des cobayes, on a obtenu pour la DL50 des valeurs respectives de 1-1,9 g/kg de poids corporel et 0,9 g/kg de poids corporel, ce qui permet d'avoir une idée de la toxicité aiguë du produit. Des rats qui avaient reçu de la morpholine neutralisée à raison de 1 g/kg de poids corporel ont survécu. Après administration par voie intrapéritonéale, on a obtenu une DL50 de 0,4 g/kg de poids corporel chez la souris et de 0,1-0,4 g/kg de poids corporel chez le rat. Après exposition par la voie respiratoire, la DL50 était d'environ 8 g/m3 chez le rat et de 5-7 g/m3 chez la souris. La DL50 de la morpholine concentrée par voie percutanée était de 0,5 ml/kg chez le lapin. La toxicité aiguë de la morpholine se caractérise par des hémorragies gastrointestinales et des diarrhées lorsqu'elle est administrée par voie orale et par une irritation et des hémorragies nasales, buccales, oculaires et pulmonaires lorsqu'elle est administrée par voie respiratoire. Lors d'une étude de 30 jours au cours de laquelle des rats ont reçu de la morpholine par gavage à des doses de 0,16 à 0,8 g/kg de poids corporel, on a observé des effets toxiques graves et une mortalité à toutes les doses. Les mêmes observations ont été effectuées sur des cobayes à des doses comprises entre 0,09 et 0,045 g/kg de poids corporel. Chez des rats soumis pendant une brève période à des inhalations de morpholine (7,2 g/m3, 4 heures par jour pendant 4 jours ou bien 1,63 g/m3, 4 heures par jour, 5 jours par semaine pendant 30 jours), on a observé une altération de la fonction pulmonaire. Le taux de mortalité chez d'autres rats allait de 0 à 100% selon le niveau d'exposition (0,36-18,1 g/m3, 6 heures par jour pendant 9 jours). Par la voie respiratoire, on a constaté que la toxicité dépendait de la dose avec une irritation locale (yeux, bouche, nez et poumons) et des hémorragies de gravité variables aux niveaux d'exposition les plus élevés. Dans une étude, on a observé un hyperfonctionnement de la glande thyroïde et dans une autre, une nécrose du foie et des tubules rénaux après exposition par la voie respiratoire. Une étude de 90 jours a montré que la morpholine administrée par voie orale (0.2-0,7 g quotidiennement par kg de poids corporel) pouvait réduire la gain de poids et entraîner une insuffisance rénale chez la souris. Après 672 jours d'administration de morpholine par voie orale (0,28-0,5 g/kg de poids corporel quotidiennement), on a observé chez la souris une hyperplasie au niveau de l'épithélium de la portion cardiaque de l'estomac. Selon une étude d'inhalation de 13 semaines, la morpholine (administrée à la dose de 0,09-0,9 g/m3 6 heures par jour, 5 jours par semaine) provoque des lésions liées à la dose au niveau de la muqueuse nasale ainsi qu'une pneumopathie aux doses les plus élevées (0,36 et 0,9 mg/m3). A la dose de 0,09 g/m3 on n'a observé aucune modification d'un certain nombre de paramètres qui puisse être imputable à ce traitement; cette concentration peut être considérée comme la dose sans effets nocifs observables dans les conditions d'une exposition subchronique par la voie respiratoire. Sous sa forme concentrée et non neutralisée, la morpholine est extrêmement irritante pour les yeux et la peau, probablement en raison de sa basicité. En la diluant et en la ramenant à un pH neutre, on peut sensiblement en réduire la toxicité topique. Selon une variante de la méthode de Buehler, la morpholine à 2% n'a pas produit de sensibilisation chez le cobaye. La morpholine ne produit pas de mutation chez des bactéries ou des levures en présence ou en l'absence d'activation métabolique (à l'exception d'un essai effectué à très forte concentration). Le passage sur hôte a également donné des résultats négatifs. On n'a pas non plus observé de réparation de l'ADN sous l'influence de la morpholine dans des cultures primaires d'hépatocytes de rats et ce composé n'a pas augmenté de façon sensible les échanges entre chromatides soeurs dans des cellules ovariennes de hamsters chinois. Les résultats d'une épreuve sur cellules lymphomateuses de souris L5178Y ont conduit à considérer la morpholine comme faiblement mutagène. Ce composé a entraîné une augmentation des foyers de type III lors d'une épreuve de transformation cellulaire maligne effectuée sur des cellules BALB/3T3, phénomène qui n'a pas été constaté avec la morpholine neutralisée. On n'a pas non plus constaté de mutation ponctuelle ni d'aberration chromosomique chez des embryons de hamsters exposés in utero à de la morpholine. On n'a pas constaté d'augmentation dans l'incidence des tumeurs chez des rats qui avaient été exposés par voie respiratoire pendant 104 semaines à des concentrations de morpholine allant jusqu'à 0,5 g/m3, ni chez des souris qui avaient reçu pendant 96 semaines dans leur eau de boisson de l'oléate de morpholine à 1%. Une étude à long terme sur un groupe de 104 rats qui recevaient dans leur alimentation 1000 mg de morpholine par kg de nourriture, a permis de mettre en évidence trois carcinomes hépatocellulaires, deux angiosarcomes pulmonaires ainsi qu'un troisième angiosarcome de localisation non précisée et enfin deux gliomes malins, alors qu'aucune tumeur n'a été observée dans le groupe témoin comportant 156 animaux. Chez des hamsters exposés dans les mêmes conditions, aucune tumeur n'a été observée. Administrée en même temps qu'un nitrite, la morpholine donne un résultat positif à l'épreuve de passage sur hôte, qui s'explique probablement par la formation de NMOR. De la morpholine administrée en même temps qu'un nitrite par mélange à la nourriture, a provoqué chez des rats des tumeurs hépatiques et pulmonaires et chez des hamsters des tumeurs hépatiques qui s'expliquent probablement par la formation endogène de NMOR. La NMOR est mutagène pour les bactéries et les levures; on a également observé avec ce composé des résultats faiblement positifs dans l'épreuve d'échange de chromatides soeurs sur des cellules CHO et lors de la recherche de mutations dans des cultures de cellules lymphomateuses de souris L5178Y. La NMOR est cancérogène pour la souris, le rat, le hamster et divers poissons; elle provoque chez la souris des tumeurs hépatiques et pulmonaires, chez le rats des tumeurs du foie, du rein et des vaisseaux sanguins, chez le hamster des tumeurs des voies digestives et respiratoires supérieures et enfin chez les poissons, des tumeurs hépatiques. 8. Effets sur l'homme On ne dispose d'aucun rapport faisant état de cas d'intoxication aiguë ou décrivant les effets d'une exposition à court ou à long terme à la morpholine dans la population générale. Un phénomène connu sous le nom de glaucopsie (vision bleutée) ainsi que dans certains cas une irritation de la peau et des voies respiratoires, ont été décrits dans des rapports d'exposition professionnelle à la morpholine; toutefois, ces rapports ne précisent pas la concentration de la morpholine dans l'air. On a indiqué que chez des ouvriers exposés pendant 3 à 10 ans à de la morpholine à des concentrations de 0,54-0,93 mg/m3, le nombre d'aberrations chromosomiques dans les lymphocytes du sang périphérique ne présentait pas de différence notable par rapport aux témoins. La morpholine concentrée est fortement irritante pour la peau; en solution (à 1/40) elle se révèle encore légèrement irritante. On n'a pas étudié la cancérogénicité potentielle de la morpholine chez les populations humaines exposées. 9. Effets sur les autres êtres vivants au laboratoire et dans leur milieu naturel Parmi les organismes aquatiques étudiés, certaines cyanobactéries (Microcystis) et certaines algues bleues unicellulaires (Scenedesmus) se révèlent être les taxa les plus sensibles puisque le seuil de toxicité (critère: inhibition de la croissance des populations) se situe à 1,7 mg/litre pour Microcystis et à 4,1 mg/litre pour Scenedesmus (durée de l'exposition: 8 jours). Des bactéries aérobies telles que Pseudomonas se sont révélées beaucoup plus résistantes; le seuil de toxicité à 16 heures ainsi que la concentration sans effets observables sur la croissance des populations atteindraient respectivement 310 et 8700 mg/litre. Cependant une concentration de 1000 mg/litre a inhibé la respiration et l'activité de la déshydrogénase (dans une proportion allant jusqu'à 20%) chez les bactéries de boues activées provenant d'usines de traitement des effluents industriels. Chez les protozoaires aquatiques étudiés jusqu'ici, des spécimens des genres Entosiphon et Chilomonas (avec des valeursseuil respectivement égales à 12 et 18 mg/litre pour ce qui est de l'inhibition de la croissance des populations) se sont révélés être les plus sensibles. Les valeurs de la CE50 à 24 heures (E=immobilisation) pour la daphnie se situaient dans les limites de 100 à 120 mg/litre. Chez les poissons, les valeurs de la CL50 à 48 et 96 heures se sont révélées > 180 mg/litre lors d'épreuves effectuées en eau douce, en eau saumâtre ou en eau de mer, la truite arc-en-ciel étant l'espèce la plus sensible. On ne dispose d'aucune donnée relative aux effets à long terme de la morpholine sur les invertébrés et les vertébrés aquatiques. L'absence d'information est également presque totale à propos de la toxicité de ce composé pour les organismes terricoles, puisque les seules données dont on dispose se limitent à la valeur de la CE à 3 jours, égale à 400 mg/litre, en ce qui concerne l'inhibition de la germination des laitues. 10. Evaluation des risques pour la santé humaine et effets sur l'environnement 10.1 Evaluation des effets sur la santé humaine Les cas d'exposition de la population générale à la morpholine résultent principalement de la consommation de denrées alimentaires contaminées. La contamination du tabac et des produits du tabac, des articles de toilette et des cosmétiques, de même que des articles en caoutchouc, peuvent contribuer à l'exposition globale. Il peut y avoir exposition professionnelle à la morpholine dans de nombreuses industries; ce composé peut être absorbé soit par inhalation, soit par la voie percutanée. On ne dispose pas de données suffisantes pour déterminer le degré d'exposition de la population générale. Les données relatives à l'exposition professionnelle sont également limitées. La morpholine n'est pas extrêmement toxique dans les conditions d'une exposition aiguë. Après administration par voie orale, la DL50 était de 1-1,9 g/kg de poids corporel chez le rat et de 0,9 g/kg de poids corporel chez le cobaye. Par ailleurs, on a trouvé, pour la CL50, des valeurs de 7,8 mg/m3 chez le rat et de 4,9 à 6,9 g/m3 chez la souris. Dans les conditions d'une exposition à court ou à long terme par la voie respiratoire, c'est l'irritation des yeux et des voies respiratoires qui constitue l'effet critique. Lors d'une étude de 13 semaines au cours de laquelle des rats ont été exposés 6 heures par jour et 5 jours par semaine à de la morpholine, on a pu fixer à 90 mg/m3 la concentration sans effets nocifs observables. Lors d'une autre étude d'inhalation, à long terme cette fois (104 semaines), on a observé une augmentation de l'incidence des cas d'inflammation de la cornée ou d'inflammation et de nécrose des fosses nasales, à la dose de 540 mg/m3 chez le rat. L'irritation des yeux et du nez présentait également une incidence accrue aux doses de 36 et 180 mg/m3. Une forte exposition à la morpholine entraîne de graves lésions hépatiques et rénales chez le rat et le cobaye. Après administration de morpholine à des rats, par mélange à leur nourriture (0,5 g/kg de poids corporel) tous les jours pendant 56 jours, on a observé une dégénérescence graisseuse du foie. Des souris qui avaient reçu tous les jours, pendant 13 semaines, de l'oléate de morpholine mêlé à leur eau de boisson à la dose d'environ 0,7 g/kg de poids corporel, ont présenté une dégénérescence albuminoïde au niveau des tubules proximaux du rein (désignée également par l'expression "tuméfaction trouble" par certains auteurs). Chez des souris femelles qui avaient reçu pendant 672 jours de la morpholine dans leur alimentation, on a observé aux doses comprises entre 0,05 et 0,4 g de morpholine administrée sous forme d'oléate, une réduction du gain de poids. Aux concentrations que l'on observe actuellement dans les cas d'exposition professionnelle ou environnementale, il ne semble pas que la morpholine risque véritablement d'entraîner des effets toxiques généraux. Cependant lors d'une exposition accidentelle ou professionnelle non contrôlée à de fortes concentrations de morpholine présentes dans l'air, il peut y avoir des effets locaux qui prennent la forme d'une irritation de la muqueuse oculaire et des voies respiratoires; en outre, un contact avec de la morpholine liquide (même diluée) peut entraîner une irritation cutanée. Il ne semble pas que la morpholine soit mutagène ou cancérogène chez l'animal. Toutefois elle peut facilement être nitrosée pour donner naissance à de la NMOR qui s'est révélée, elle, mutagène et cancérogène chez plusieurs espèces d'animaux de laboratoire. L'administration de morpholine, puis d'un nitrite, mêlés à la nourriture d'animaux de laboratoire a provoqué un accroissement de l'incidence des tumeurs, pour la plupart des carcinomes hépatocellulaires et des sarcomes du foie et du poumon. Il est donc prudent de considérer l'exposition à la morpholine comme un facteur supplémentaire de risque cancérogène chez les populations exposées. 10.2 Evaluation des effets sur l'environnement Comme on sait très peu de choses sur l'exposition environnementale et que les données relatives à l'exposition à long terme dans l'hydrosphère ou à court et à long terme dans le milieu terrestre font défaut, il est impossible, pour l'instant, de procéder valablement à une appréciation du risque. On peut toutefois tirer un certain nombre de conclusions sur la base des propriétés observées de la morpholine, des données écotoxicologiques disponibles et des quelques renseignements dont on dispose sur les concentrations dans l'environnement. La forte solubilité dans l'eau de la morpholine et sa faible volatilité (dans les conditions du milieu) font que l'hydrosphère en constitue le principal milieu récepteur. La morpholine est intrinsèquement biodégradable et, bien que cette biodégradation soit lente, rien n'indique qu'elle s'accumule dans l'hydrosphère. En outre, sa bioaccumulation est également peu probable. On ne possède que relativement peu de données sur la toxicité de la morpholine pour les organismes vagiles. Toutefois, il paraît improbable qu'au niveau actuel des émissions de morpholine, des dommages importants puissent être causés à l'environnement dans son ensemble. Les effets locaux, dus par exemple aux émissions industrielles ou à la libération de morpholine dans l'environnement par suite de l'usure des pneumatiques, restent à évaluer. Il peut y avoir contamination de certains produits alimentaires comme le poisson, par de la morpholine, contamination qui viendrait de l'environnement, mais cela n'est pas certain. La transformation de la morpholine en NMOR est la principale cause d'inquiétude, en particulier en ce qui concerne les populations de vertébrés. On a signalé la présence de NMOR dans des eaux résiduaires industrielles et dans le sol aux alentours d'une usine. On peut s'inquiéter de la présence de morpholine dans de l'eau destinée à être traitée pour la rendre potable. 11. Conclusions et recommandations La morpholine ne présente aucun risque toxique pour l'homme au niveau habituel d'exposition mais il faut prendre garde à sa transformation en NMOR qui est cancérogène. Rien n'indique qu'aux nivaux actuels d'exposition, la morpholine constitue un risque important pour les biotes présents dans l'environnement. 11.1 Recommandations en vue de la protection de la santé humaine a) Il faut éviter dans la mesure du possible toute exposition humaine à la morpholine. b) Il faut éviter la contamination des denrées alimentaires par leur emballage ou lors de leur transformation. c) La morpholine ne doit pas entrer dans la composition d'articles en caoutchouc destinés en entrer en contact direct avec l'homme. d) La morpholine ne doit pas entrer dans la composition de préparations destinées à la toilette ou à un usage cosmétique. e) Les effluents industriels doivent être traités avec soin afin d'éviter que la morpholine ne pénètre dans l'eau destinée à la boisson. f) Compte tenu de la possibilité de formation de NMOR cancérogène, les limites d'exposition professionnelle actuelles devront être réexaminées. 11.2 Recommandations en vue de la protection de l'environnement Il faut éviter les déversements et les décharges massives dans les usines de traitement des effluents. 11.3 Recommandations en vue de recherches ultérieures Des travaux doivent être entrepris dans les domaines suivants: a) toxicité pour la fonction de reproduction des mammifères; b) toxicité à long terme pour les mammifères; c) effets sur les mammifères d'une exposition à de faibles concentrations de morpholine en présence ou non de nitrites et de nitrates; d) transnitrosation par la NMOR in vivo et in vitro; e) biodégradation en anaérobiose, en particulier dans des conditions entraînant la réduction des nitrates; f) catalyse microbienne de la N-nitrosation en situation réelle; g) concentrations de la morpholine dans les eaux souterraines, le sol et les rivières dont l'eau est utilisée pour la boisson; h) concentration de morpholine aux alentours d'usines qui produisent ou transforment cette substance; i) métabolisme et toxicocinétique chez l'homme en vue de la mise au point de méthodes pour la surveillance biologique de la morpholine; j) surveillance de la concentration de morpholine et de NMOR dans les denrées alimentaires, dans l'eau de boisson et l'air intérieur aux habitations; k) collecte et diffusion de données sur l'exposition professionnelle. RESUMEN Y EVALUACION, CONCLUSIONES Y RECOMENDACIONES 1. Propiedades físicas y químicas La morfolina (1-oxa-4-azaciclohexano) es un líquido incoloro, oleoso, higroscópico y volátil que desprende un característico olor a amina ("a pescado"). Es totalmente miscible en agua, así como en numerosos disolventes orgánicos, y parcialmente soluble en soluciones acuosas alcalinas. Se trata de una base, y el pKa del ácido conjugado es de 8,33. En consecuencia, el coeficiente de reparto octanol/agua depende del pH (log Pow -2,55 a pH 7, y - 0,84 a pH 10; 35°C). La presión de vapor de las soluciones acuosas de morfolina es casi como la del agua. La morfolina puede sufrir diversas reacciones. Se comporta químicamente como una amina secundaria. En condiciones ambientales y fisiológicas, como resultado de la reacción de las soluciones de nitrito o de óxidos de nitrógeno gaseosos con las soluciones diluidas de morfolina, se forma N-nitrosomorfolina (NMOR), conocido carcinógeno para los animales. Los niveles de óxido de nitrógeno (NO) pueden ser importantes en la nitrosación. Las condiciones de nitrosación, en particular el pH, tienen una considerable influencia. 2. Métodos analíticos La morfolina se puede determinar mediante cromatografía de gases (GC) en columnas empacadas o capilares, cromatografía líquida de alta resolución (HPLC) y cromatografía iónica. Entre los detectores utilizados cabe citar el detector de ionización por conductor, el detector de fotometría de llama, el detector selectivo de nitrógeno (NSD), y la espectrometría de masas y el analizador de energía térmica (TEA) para la GC, y el detector de UV y el TEA para la HPLC. Para determinar cantidades ínfimas hay que recurrir a la derivatización. El método de elección en lo que respecta a sensibilidad es al parecer la GC combinada con el TEA, previa transformación por derivatización en NMOR (límite de detección de 2-3 µg/kg en diversas matrices). Las bajas concentraciones de morfolina en el aire se pueden determinar mediante GC y NSD. 3. Fuentes de exposición humana y ambiental Se estima que cada año se producen industrialmente en todo el mundo unas 25 000 toneladas de morfolina, pero no se conoce con detalle la producción de algunos países. El principal proceso de producción utilizado para su obtención es al parecer la reacción de dietilenglicol con amoniáco en presencia de hidrógeno y de catalizadores. La morfolina es una sustancia química que puede utilizarse con muy diversos fines, pero no se conocen todos sus posibles usos. Es importante como producto intermedio en la industria del caucho, como inhibidor de la corrosión, y en la síntesis de abrillantadores ópticos, protectores de cultivos, colorantes y medicamentos. La morfolina se utiliza como disolvente de una amplia variedad de productos orgánicos, entre ellos resinas, colorantes y ceras. Se puede utilizar como catalizador. La morfolina se usa aún en algunos países para elaborar productos cosméticos y de tocador. En algunos países se usa también en varias aplicaciones relacionadas directa o indirectamente con los aditivos alimentarios. La exposición humana y ambiental se debe a emisiones tanto gaseosas como acuosas, y es también el resultado directo de alguno de sus usos, por ejemplo como componente de productos cosméticos y de ceras. Las emisiones más importantes son resultado probablemente de su fabricación y de su uso en la industria química (sobre todo en la producción y el uso de productos químicos derivados del caucho) y como agente anticorrosión. Se ha detectado morfolina en muchos tipos de alimento y de tabaco. En estos casos el origen del producto podría ser la parafina empleada para proteger la fruta o en determinados envases, pero a veces no se puede establecer su procedencia. 4. Transporte, distribución y transformación en el medio ambiente La morfolina es químicamente estable en la biosfera, aunque sufre nitrosación química y biológica, transformándose así en NMOR. La morfolina es por naturaleza biodegradable. Así es en las condiciones reinantes en las plantas de fangos activados que funcionan correctamente. No obstante, en condiciones no idóneas probablemente no se produce una degradación importante. El tiempo medio de retención del sólido en las plantas de fangos activados tiene una importancia crucial y debe ser superior a ocho días para que se produzca una degradación fiable de la morfolina. No se dispone de datos suficientes sobre la bioacumulación de morfolina en organismos acuáticos y terrestres. Según el coeficiente de reparto n-octanol/agua del producto (log Pow = -2,55 a pH 7), no debería producirse bioacumulación. Como es un importante producto químico industrial con una amplia gama de aplicaciones, es previsible la presencia de morfolina o de sus derivados en numerosos efluentes industriales. Usada como inhibidor de la corrosión en el agua de calderas, aparece en los efluentes de éstas, incluidos los de las centrales eléctricas en que se utiliza morfolina. Su uso en la fabricación de aditivos del caucho da lugar a la liberación de una cantidad indeterminada de morfolina a la hidrosfera y la geosfera como consecuencia del desgaste de los neumáticos y de la eliminación de neumáticos usados. Componente de parafinas y abrillantadores, la morfolina se libera al medio ambiente por volatilización. Es adsorbida rápidamente por la humedad, y el principal compartimiento de posible acumulación de la morfolina es, por tanto, la hidrosfera. No obstante, los datos limitados disponibles parecen indicar que el producto no se acumula en la hidrosfera. La incineración es el método preferido de eliminación de la morfolina no diluida, pero a veces es necesario controlar las emisiones de óxido de nitrógeno para respetar las reglamentaciones en materia de medio ambiente. Por lo que se refiere a los efluentes acuosos, el tratamiento de fangos activados es suficiente, a condición de que la planta sea cuidadosamente controlada (véase más arriba). 5. Niveles ambientales y exposición humana No hay datos disponibles sobre los niveles de morfolina en el aire ambiental y de locales cerrados y en el agua de bebida. Hay datos limitados sobre su presencia en aguas naturales, y se carece de información sobre su presencia en el suelo. A tenor de los datos disponibles, la fuente principal de exposición de la población general a la morfolina son los alimentos, que pueden estar contaminados como consecuencia del tratamiento directo de la fruta con parafinas contenedoras de morfolina a efectos de conservación, de los tratamientos a base de vapor empleados durante la elaboración de los alimentos, y del uso de material de envasado con morfolina. No obstante, los datos cuantitativos disponibles acerca de la contaminación de los alimentos por morfolina y NMOR son limitados. Por ejemplo, en productos lácteos preenvasados se han hallado valores comprendidos entre 5 y 77 µg/kg de morfolina y de hasta 3,3 µg/kg de NMOR. La concentración de morfolina en diversas muestras de alimentos (pescado, carne, productos vegetales, bebidas) no rebasaba por lo general el valor de 1 mg/kg. Se han detectado niveles más altos (hasta 71,1 mg/kg) en frutos cítricos en el Japón. En un estudio realizado en Italia trabajando con un límite de detección de 0,3 µg/kg no se halló NMOR en una serie de alimentos. Los datos disponibles no permiten hacer una estimación de la ingesta de morfolina y NMOR a través de los alimentos. Se ha detectado morfolina en tabaco de cigarrillos a una concentración de 0,3 mg/kg, y en tabaco en polvo y tabaco mascable a concentraciones de hasta 4,0 mg/kg. En otras ocasiones se ha notificado el hallazgo de nitrosomorfolina a niveles de hasta 0,7 mg/kg en el tabaco en polvo. En estos casos el producto provenía probablemente de la parafina de los envases utilizados. Se ha detectado NMOR en algunos productos cosméticos y de tocador, como por ejemplo champús y maquillaje de ojos, así como en artículos de goma, tales como chupetes y tetillas de biberón, a niveles de hasta 3,5 mg/kg. En varias industrias puede darse una exposición ocupacional a la morfolina, pero se dispone de pocos datos sobre la exposición de trabajadores al producto. Todos los valores notificados son inferiores a 3 mg/m3. Se ha detectado la exposición ocupacional a NMOR en la industria del caucho, donde se han hallado concentraciones de hasta 250 µg/m3. Los datos actualmente disponibles permiten hacerse una idea del riesgo potencial de exposición humana, pero no estimar con exactitud los niveles de exposición de las poblaciones general y laboral a la morfolina y la NMOR. 6. Cinética y metabolismo en animales de laboratorio y en el hombre La morfolina se absorbe por vía oral, por vía cutánea y por inhalación. En la rata, tras su administración oral o intravenosa, la morfolina se distribuye rápidamente y se concentra sobre todo en el intestino y el músculo. En el conejo, la morfolina administrada por vía intravenosa o por inhalación se concentra preferentemente en los riñones, y en menor medida en los pulmones, el hígado y la sangre. La morfolina no se une de forma importante a las proteínas del plasma. Se han notificado semividas plasmáticas de 115 (rata), 120 (hámster) y 300 minutos (cobayo). La morfolina se excreta principalmente inalterada por vía renal en diversas especies. Al cabo de un día de su administración, se halló en la orina el 70%-90% de la morfolina. La neutralización de la morfolina acelera su excreción. Un pequeño porcentaje se excreta a través del aire espirado y de las heces. Estudios realizados en la rata, el ratón, el hámster y el conejo muestran que la morfolina se elimina casi enteramente en su forma no metabolizada. En el cobayo, puede darse una reacción de N-metilación seguida de N-oxidación, metabolizándose así hasta un 20% de la dosis administrada. En presencia de nitrito, la morfolina se puede transformar en NMOR tanto in vitro como in vivo. En función de la dosis, entre el 0% y el 12% de la morfolina administrada a ratas junto con nitritos puede sufrir nitrosación. La inmunoestimulación, que entraña la activación de macrófagos, puede aumentar el grado de nitrosación. 7. Efectos en mamíferos de laboratorio y en sistemas de pruebas in vitro En lo que respecta a la toxicidad aguda, la DL50 de la morfolina administrada oralmente es de 1-1,9 g/kg de peso corporal y 0,9 g/kg de peso corporal en la rata y el cobayo, respectivamente. Las ratas que recibieron morfolina neutralizada (1 g/kg de peso corporal) sobrevivieron. Tras administración interperitoneal, la DL50 fue de 0,4 g/kg de peso corporal en el ratón y de 0,1 - 0,4 g/kg de peso corporal en la rata. En los experimentos de exposición por inhalación, la DL50 fue de aproximadamente 8 g/m3 en la rata y de entre 5 y 7 g/m3 en el ratón. Por vía cutánea la DL50 en el conejo fue de 0,5 ml/kg de morfolina no diluida. La intoxicación aguda por morfolina se caracteriza por la aparición de hemorragia gastrointestinal y diarrea tras la exposición oral, y de irritación y hemorragias en la nariz, la boca, los ojos y los pulmones tras la inhalación. En un estudio realizado durante 30 días con ratas a las que se administraron con sonda dosis de 0,16 - 0,8 g/kg de peso corporal, se observaron efectos tóxicos graves y mortalidad a todas las dosis empleadas. En el cobayo se observó también toxicidad grave y mortalidad a todas las dosis en el margen de 0,09 a 0,45 g/kg de peso corporal. Se ha notificado la aparición de alteraciones de la función pulmonar en la rata tras la exposición a morfolina por inhalación durante cortos periodos (7,2 g/m3, 4 h/día, 4 días y 1,63 g/m3, 4 h/día, 5 días/semana, 30 días). La mortalidad en la rata osciló entre 0% y 100% según el nivel de exposición (0,36 - 18,1 g/m3, 6 h/día, 9 días). La toxicidad por inhalación dependía de la dosis, observándose diversos grados de irritación local (ojos, boca, nariz, pulmones) y hemorragias a los niveles más altos de exposición. En un estudio se detectó un aumento de la función de la glándula tiroides, y en otro necrosis del hígado y de los túbulos renales, como resultado de la exposición por inhalación. Un estudio de 90 días de duración reveló que la morfolina administrada por vía oral (0,2 - 0,7 g/kg de peso corporal al día) durante ese espacio de tiempo puede reducir el aumento del peso corporal y la función renal en el ratón. Se ha notificado la aparición de hiperplasia del epitelio del estómago anterior en el ratón como resultado de la exposición oral a morfolina (0,28 - 0,5 g/kg de peso corporal al día) durante 672 días. En un estudio de 13 semanas sobre los efectos de su inhalación, la morfolina (0,09 - 0,9 g/m3, 6 h/día, 5 días/semana) causó lesiones dosis-dependientes de la mucosa nasal y neumonía a los niveles de exposición más altos (0,36 y 0,9 mg/m3). Un cierto número de parámetros no variaron en respuesta al tratamiento cuando se utilizaron 0,09 g/m3; esta concentración puede considerarse el nivel sin efectos adversos observados (NOAEL) en las condiciones de exposición por inhalación subcrónica. La morfolina no diluida y no neutralizada es altamente irritante para los ojos y la piel, probablemente a causa de sus propiedades alcalinas. La dilución y la neutralización de su pH pueden reducir considerablemente su toxicidad tópica. La morfolina (2%) no indujo sensibilidad en el cobayo al aplicar el método modificado de Buehler. La morfolina no indujo la aparición de mutaciones en bacterias o levaduras, con o sin activación metabólica (salvo en un caso a una concentración muy alta). Se obtuvieron resultados negativos en el ensayo realizado por mediación de un huésped. La morfolina no indujo reparación del ADN en hepatocitos primarios de rata, así como tampoco un aumento importante del intercambio de cromátides hermanas en células ováricas de hámster chino. Se consideró que la morfolina tenía efectos ligeramente mutagénicos en el ensayo con células L5178Y de linfoma de ratón. El producto aumentó los focos de tipo III en el ensayo de transformación de células malignas BALB/3T3, lo que no ocurrió con la morfolina neutralizada. La morfolina no causó ni mutaciones puntuales ni aberraciones cromosómicas en embriones de hámster expuestos in utero. No se observó ningún aumento de la incidencia de tumores en ratas sometidas a niveles de hasta 0,5 g/m3 de morfolina por inhalación durante 104 semanas, así como tampoco en ratones que ingirieron oleato de morfolina al 1% con el agua de bebida durante 96 semanas. En un estudio de larga duración realizado con un grupo de 104 ratas que recibieron 1000 mg de morfolina/kg dieta, se observaron tres casos de carcinoma de células hepáticas, dos de pulmón y uno de angiosarcoma (no especificado), así como dos gliomas malignos, mientras que en un grupo testigo de 156 ratas no se observaron tumores. No se detectaron tumores en hámsters sometidos a idénticas condiciones. La morfolina administrada al mismo tiempo que nitrito da lugar a resultados positivos en el ensayo realizado por mediación de un huésped, probablemente debido a la formación de NMOR. La ingestión simultánea de morfolina y nitrito indujo la aparición de tumores hepáticos y pulmonares en la rata y de tumores hepáticos en el hámster, probablemente a causa de la formación endógena de NMOR. La NMOR es mutágena en bacterias y levaduras; se notificaron resultados ligeramente positivos en lo que respecta al intercambio de cromátides hermanas en células CHO, así como a la aparición de mutaciones en células L5178Y de linfoma de ratón. La NMOR es carcinógena en el ratón, la rata, el hámster y diversos peces, y produce tumores de hígado y de pulmón en el ratón; de hígado, riñón y vasos sanguíneos en la rata; de hígado y de las vías digestivas y respiratorias superiores en el hámster, y de hígado en peces. 8. Efectos en el hombre No se han descrito casos de intoxicación aguda o de efectos a corto o largo plazo de la exposición a morfolina en la población general. En informes sobre la exposición ocupacional a la morfolina se ha descrito el fenómeno conocido como visión azul o glaucopsia, así como algunos casos de irritación de la piel y del tracto respiratorio, pero sin hacer mención de las concentraciones atmosféricas de morfolina. Se señaló que el número de aberraciones cromosómicas en los linfocitos de sangre periférica de trabajadores expuestos durante 3 a 10 años a concentraciones de morfolina de 0,54 - 0,93 mg/m3 no diferían significativamente del número hallado en los testigos. La morfolina no diluida es muy irritante para la piel; una solución diluida (1/40) tuvo efectos moderadamente irritantes. No se ha investigado el potencial carcinógeno de la morfolina en poblaciones humanas expuestas. 9. Efectos sobre otros organismos en el laboratorio y en el terreno Entre los microorganismos acuáticos estudiados, determinadas cianobacterias (Microcystis) y algas verdes unicelulares (Scenedesmus) son al parecer las especies más sensibles según se desprende de los valores de la toxicidad liminal (empleando como criterio la inhibición del crecimiento de la población) notificados (duración de la exposición: 8 días): 1,7 mg/litro para Microcystis, y 4,1 mg/litro para Scenedesmus. Bacterias aerobias tales como Pseudomonas resultaron ser mucho más resistentes: la toxicidad liminal a las 16 horas y la NOEC para el crecimiento de la población se han cifrado, respectivamente, en 310 y 8700 mg/litro. No obstante, una concentración de 1000 mg/litro inhibía la respiración y la actividad deshidrogenasa (hasta un 20%) en fangos activados de plantas de tratamiento industrial. Entre los protozoos acuáticos analizados hasta ahora, la mayor sensibilidad corresponde a ejemplares de los géneros Entosiphon y Chilomonas (con toxicidades liminales de 12 y 18 mg/litro, respectivamente, para la inhibición del crecimiento de la población). En Daphnia, la CE a las 24 horas (E = inmovilización) se ha establecido en valores comprendidos entre 100 y 120 mg/litro. Los valores notificados para la CL50 a las 48 - 96 horas en peces estudiados en agua dulce, salobre o marina fueron > 180 mg/litro, y la especial más sensible en este sentido es la trucha arco iris. No se dispone de datos sobre los efectos a largo plazo en invertebrados y vertebrados acuáticos. La información sobre la toxicidad de la morfolina en organismos silvestres del suelo es casi inexistente, pues se limita a una CE a los 3 días de aproximadamente 400 mg/litro para la inhibición de la germinación en la lechuga. 10. Evaluación de los riesgos para la salud humana y de los efectos en el medio ambiente 10.1 Evaluación de los efectos en la salud humana La principal vía de exposición de la población general a la morfolina es el consumo de alimentos contaminados. También puede contribuir a la exposición general la contaminación del tabaco y de los productos derivados del tabaco, así como de los artículos cosméticos y de tocador y de los productos de goma. En numerosas industrias se da una exposición ocupacional a la morfolina; el compuesto es absorbido por inhalación y por vía cutánea. No hay datos suficientes para determinar el grado de exposición de la población general. Los datos disponibles sobre la exposición ocupacional al producto también son limitados. La morfolina no es altamente tóxica en condiciones de exposición aguda. La DL50 tras administración oral es de 1 a 1,9 g/kg de peso corporal en la rata y de 0,9 g/kg de peso corporal en el cobayo. Se han notificado CL50 de 7,8 mg/m3 (rata) y 4,9 - 6,9 g/m3 (ratón). En las condiciones de exposición por inhalación de corta y larga duración, los efectos críticos son al parecer la irritación de los ojos y las vías respiratorias. Puede considerarse que el NOAEL corresponde a una concentración de 90 mg/m3 en las condiciones en que se llevó a cabo el experimento de 13 semanas en la rata (6 h/día, 5 días/semana). En un estudio de larga duración (104 semanas) sobre los efectos de la inhalación del producto se observó una mayor incidencia de inflamación de la córnea y de inflamación y necrosis de la cavidad nasal en ratas sometidas a 540 mg/m3. A concentraciones de 36 y 180 mg/m3 se observó también una mayor incidencia de irritación de los ojos y de la cavidad nasal. Las exposiciones altas a la morfolina causan lesiones graves del hígado y los riñones en la rata y el cobayo. Se ha notificado la aparición de degeneración grasa del hígado en la rata como resultado de la ingestión diaria de morfolina (0,5 g/kg de peso corporal) durante 56 días. En el ratón la administración de una sal de morfolina y ácido oleico en el agua de bebida a una dosis de aproximadamente 0,7 g/kg de peso corporal al día durante 13 semanas dio lugar a una hinchazón turbia de los túbulos proximales renales. Se observó una disminución del aumento del peso corporal en los ratones hembra del experimento de administración prolongada (672 días) de una dieta con dosis comprendidas entre 0,05 y 0,4 g de morfolina (en forma de sal del ácido oleico). A los niveles que según se ha notificado alcanza actualmente la exposición ocupacional y ambiental, no parece que la morfolina entrañe ningún riesgo importante de efectos tóxicos sistémicos. Pueden aparecer efectos locales (irritación) en los ojos y las vías respiratorias en las exposiciones ocupacionales y accidentales no controladas a altas concentraciones de morfolina transmitida por el aire, y el contacto con morfolina líquida (incluso diluida) puede causar irritación cutánea. La morfolina no parece tener efectos mutágenos o carcinógenos en los animales. No obstante, fácilmente puede nitrosarse y convertirse en NMOR producto mutágeno y carcinógeno en varias especies de animales de experimentación. En la rata, la morfolina ingerida secuencialmente con nitrito dio lugar a un aumento de los tumores, sobre todo de carcinoma hepatocelular y de sarcomas del hígado y los pulmones. Así pues, por prudencia, conviene considerar que la exposición a la morfolina aumenta el riesgo de carcinogénesis en las poblaciones expuestas. 10.2 Evaluación de los efectos en el medio ambiente Habida cuenta de los muy limitados conocimientos respecto a la exposición ambiental, así como de la carencia de datos sobre los efectos de la exposición de larga duración en el agua y la exposición de corta y larga duración en el medio terrestre, por el momento no es posible hacer una evaluación rigurosa de los riesgos. Sobre la base de las propiedades conocidas de la morfolina, de la información ecotoxicológica disponible y de los escasos datos sobre su concentración en el medio ambiente, es posible extraer algunas conclusiones. Debido a la alta hidrosolubilidad de la morfolina y a su baja volatilidad (en condiciones ambientales), su principal sumidero ambiental es la hidrosfera. La morfolina es por naturaleza biodegradable y, aunque la degradación es lenta, no hay datos que lleven a pensar que se acumula en la hidrosfera. Su bioacumulación es improbable. Hay relativamente pocos datos sobre la toxicidad de la morfolina en organismos silvestres. No obstante, parece improbable que los niveles actuales de emisión de morfolina puedan causar daños importantes en un radio de acción amplio. Restan por evaluar los efectos locales, como por ejemplo los debidos a emisiones industriales o a la morfolina liberada por el desgaste de los neumáticos. La contaminación de algunos alimentos, como el pescado, por morfolina puede deberse a contaminación ambiental, pero ello no es seguro. La conversión de la morfolina en NMOR es la principal causa de inquietud, sobre todo en relación con las poblaciones de vertebrados. Se ha notificado la presencia de NMOR en aguas residuales industriales y en el suelo próximo a una fábrica. La presencia de morfolina en agua destinada a transformarse por elaboración en agua de bebida suscita preocupación. 11. Conclusiones y recomendaciones La morfolina no entraña riesgos de toxicidad para el hombre a los niveles habituales de exposición, pero hay que tener en cuenta que puede transformarse en el carcinógeno NMOR. No hay ningún indicio de que a los niveles actuales de exposición la morfolina entrañe un riesgo sustancial para la biota en el medio ambiente. 11.1 Recomendaciones para la protección de la salud humana a) En la medida de lo posible debe evitarse la exposición humana a la morfolina. b) Debe evitarse que los alimentos se contaminen durante su envasado y elaboración. c) Se evitará que contengan morfolina los productos de goma con los que el hombre haya de tener contacto directo. d) No debe emplearse morfolina en la preparación de productos cosméticos o de tocador. e) Los efluentes industriales deben ser objeto de un riguroso tratamiento para evitar la contaminación por morfolina del agua de bebida. f) Habida cuenta de la formación del carcinógeno NMOR es necesario replantearse los actuales límites de exposición ocupacional. 11.2 Recomendaciones para la protección del medio ambiente Debe evitarse que las plantas de tratamiento de efluentes sufran derrames y sobrecargas. 11.3 Recomendaciones para ulteriores investigaciones Deben emprenderse estudios sobre los siguientes temas: a) toxicidad reproductiva en mamíferos; b) toxicidad a largo plazo en mamíferos; c) efecto de la exposición de mamíferos a niveles bajos de morfolina, con y sin nitrito y nitrato; d) transnitrosación por NMOR in vivo e in vitro; e) biodegradación en condiciones anaerobias, sobre todo en condiciones favorecedoras de la reducción de nitratos; f) catálisis microbiana de la N-nitrosación en condiciones realistas; g) niveles ambientales de morfolina en las aguas subterráneas, el suelo y los ríos a partir de los cuales se obtenga agua de bebida; h) niveles ambientales de morfolina en torno a las fábricas productoras y procesadoras de morfolina; i) metabolismo y toxicocinética en el hombre, como parte del desarrollo de métodos para la vigilancia biológica de la morfolina; j) vigilancia de los niveles de morfolina y de NMOR en los alimentos, el agua de bebida y el aire de locales cerrados; k) se deben reunir y poner a disposición datos sobre la exposición ocupacional.
See Also: Toxicological Abbreviations Morpholine (HSG 92, 1995) Morpholine (ICSC) Morpholine (IARC Summary & Evaluation, Volume 47, 1989) Morpholine (IARC Summary & Evaluation, Volume 71, 1999)