SID S Initial Assessment Report

For

SIAM 15

Boston, Massachusetts; 22 – 25 October 2002

1. Chemical Name: Triphenyl phosphate
2. CAS Number: 115-86-6
3. Sponsor Country: Germany
 Contact Point: BMU (Bundesministerium für Umwelt, Naturschutz und Reaktorsicherheit)
 Contact person: Prof. Dr. Ulrich Schlottmann
 Postfach 12 06 29
 D- 53048 Bonn

4. Shared Partnership with:

5. Roles/Responsibilities of the Partners:
 • Name of industry sponsor /consortium: Bayer AG, Germany
 Contact person: Dr. Burkhardt Stock
 D-51368 Leverkusen
 Gebäude 9115

 • Process used: see next page

6. Sponsorship History

 • How was the chemical or category brought into the OECD HPV Chemicals Programme?
 by ICCA-Initiative

7. Review Process Prior to the SIAM:

 last literature search (update):
 17 May 2002 (Human Health): databases medline, toxline;
 search profile CAS-No. and special search terms
 27 May 2002 (Ecotoxicology): databases CA, biosis; search profile CAS-No. and special search terms

8. Quality check process: As basis for the SIDS-Dossier the IUCLID was used. All data have been checked and validated by BUA.

9. Date of Submission: 20 August 2002

10. Date of last Update:
11. Comments: OECD/ICCA - The BUA* Peer Review Process

Qualified BUA personnel (toxicologists, ecotoxicologists) perform a quality control on the full SIDS dossier submitted by industry. This quality control process follows internal BUA guidelines/instructions for the OECD/ICCA peer review process and includes:

- a full (or update) literature search to verify completeness of data provided by industry in the IUCLID/HEDSET
- Review of data and assessment of the quality of data
- Review of data evaluation
- Check of adequacy of selection process for key studies for OECD endpoints, and, where relevant, for non-OECD endpoints by checking original reports/publications
- Review of key study description according robust summaries requirements; completeness and correctness is checked against original reports/publications (if original reports are missing: reliability (4), i.e. reliability not assignable)
- Review of validity of structure-activity relationships
- Review of full SIDS dossier (including SIAR, SIAP and proposal for conclusion and recommendation for further work)
In case of data gaps, review of testing plan or rationale for not testing

* BUA (GDCh-Beratergremium für Altstoffe): Advisory Committee on Existing Chemicals of the Association of German Chemists (GDCh)
SIDS INITIAL ASSESSMENT PROFILE

<table>
<thead>
<tr>
<th>CAS No.</th>
<th>115-86-6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemical Name</td>
<td>Triphenyl phosphate</td>
</tr>
</tbody>
</table>
| Structural Formula | ![Structural Formula](image)

SUMMARY CONCLUSIONS OF THE SIAR

Human Health

Triphenyl-phosphate (TPP) is degraded by hydrolysis in rat liver homogenate to diphenyl-phosphate as the major metabolite. Acute toxicity after oral and dermal administration is very low: acute oral administration in rats, mice, rabbits and guinea pigs produced LD50 values in a range of 3000 to above 20 000 mg/kg bw. Only one study in mice with limited documentation gave a value of 1320 mg/kg bw. After dermal application an LD50 of above 7900 mg/kg bw was established in rabbits. No valid studies are available regarding the inhalation of triphenyl phosphate. Triphenyl phosphate is not irritant to the skin. The irritation potential of triphenyl phosphate on the mucous membrane of the eye is very low. No animal data regarding skin sensitisation are available. There are few human case reports showing evidence of skin sensitisation. The incidence of skin sensitisation is very low.

Based on the available data the toxicity after repeated oral treatment of rats with triphenyl phosphate was low. A 35 day study using doses of up to 350 mg/kg bw/day produced a slight depression of body weight gain and an increase of liver weights at the highest dose. An estimated dose of ~ 70 mg/kg bw/day was without any effect. Three studies for 4 month with doses of up to 1% in the diet (~ 700 mg/kg bw/day) confirmed the effect on growth. Whereas in two studies body weight gain was depressed only at the highest dose of 1 %, in another study a decrease was observed even at 0.5 %. The general well being as well as neurotoxic or immunotoxic parameters were not affected in all dose groups. Therefore the overall NOEL for these studies is 161 mg/kg bw/day due to reduced body weight gain. The low toxicity was confirmed also after dermal exposure of 100 and 1000 mg/kg bw/day in rabbits for 15 days without any sign of toxicity besides a depression of acetylcholinesterase as the only dose related effect. The toxicological relevance of this effect is hard to evaluate since quantitative data as well as the purity of the test material are not available.

Neurotoxicity is a potential adverse effect of many organophosphates. In available studies in hens and cats pure triphenyl phosphate did not induce immediate nor delayed neuropathy. The findings of a decreased activity of choline esterase and paralysis predominantly in cats in older studies indicating a neurotoxic potential were not reproduced in later studies and may be due to contamination of the tested samples by other organophosphorus esters. At the high doses of triphenyl phosphate used even small concentrations of impurities might have sufficient activity.

Tests for gene mutations in bacterial as well as yeast and mammalian cells did not reveal any sign of mutagenicity. An UDS-test in syrian hamster fibroblast cells showed no genotoxic effect. There is no test concerning chromosomal aberration.

There are no findings indicating any adverse effects on fertility or the development of the fetus up to the highest tested dose level of 1% in the diet (~ 700 mg/kg bw/day) in the rat treated for 4 months during gametogenesis prior to mating and throughout mating and gestation.

The mouse lung adenoma assay gave no indication of a carcinogenic potential.
Environment

Triphenyl phosphate has a solubility in water between 0.2 mg/l (river water) and 1.9 mg/l (distilled water) at 20 °C, a vapour pressure of 0.000835 Pa at 25 °C and a log Kow of 4.6. According to a Mackay Level I model calculation, triphenyl phosphate is mainly distributed to soil (43.9 %) and sediment (41.0 %), and to a lesser extent to water (14.3 %) and air (0.7 %). Triphenyl phosphate is hardly volatile from aqueous solution (calculated Henry constant: 0.018 - 0.036 Pa - m³/mol). The substance is strongly adsorbed to soil and sediment (measured Koc-values in the range of 2514 – 3561). In the atmosphere rapid degradation of triphenyl phosphate via indirect photolysis occurs ($t_{1/2}$air: ca. 12 h). While triphenyl phosphate is relatively stable under neutral and acidic conditions ($t_{1/2}$ = 19 d at pH 7; $t_{1/2}$ > 28 d at pH 5), it undergoes hydrolysis under alkaline conditions ($t_{1/2}$ = 7.5 d at pH 8.2; $t_{1/2}$ = 1.3 d at pH 9.5). In soil DT50 for primary degradation is 37 and 21 days under aerobic and anaerobic test conditions, respectively. Triphenyl phosphate is readily biodegradable (83 - 94% degradation after 28 d). Under anaerobic conditions with river sediment ca. 90% triphenyl phosphate were primary degraded after 40 days of incubation. Mineralisation was about 22 % after 40 days. Measured bioconcentration factors in fish were in the range of 110 - 144, indicating a moderate bioaccumulation potential. As the BCF values are related to the parent compound, there is no information on possible accumulation of stable metabolites. BCFs for *Lemna minor* and *Typha sp.* are stated to be < 50. As the substance was found in dolphins collected in the Gulf of Mexico, accumulation via the food chain may occur.

The acute toxicity has been determined for fish (*Oncorhynchus mykiss*: 96 h-LC50 = 0.4 mg/l) and invertebrates (*Mysidopsis bahia*: 96 h-EC50 > 0.18 - 0.32 mg/l, *Daphnia magna*: 48 h-EC50 = 1.0 mg/l). In tests with algae (*Selenastrum capricornutum*, *Scenedesmus subspicatus*, *Chlorella vulgaris*) NOEC values in the range of 0.25 - 2.5 mg/l were obtained after exposure periods of 96 h. In long term tests with fish (*Oncorhynchus mykiss*) a 30 d - EC10 of 0.037 mg/l was found. A PNECaqua = 0.74 µg/l is derived from the aforementioned long term NOEC using an assessment factor of 50.

Recommendation

Human Health: The chemical is currently of low priority for further work.

Environment: The chemical is a candidate for further work.

Rationale for the Recommendation and Nature of Further Work Recommended

Human Health: The chemical is currently of low priority for further work based on a low hazard potential.

Environment: Triphenyl phosphate has a wide dispersive use as flame retardant. Environmental releases are likely to occur during production, during the use as flame retardant e.g. in polymer applications as well as during the service life and the disposal of products containing the substance. Also accidental spill and leakage of hydraulic liquids in different application areas can be a source of environmental release. However, no exposure information is available, except for the production at the sponsor company. Triphenyl phosphate is highly toxic to aquatic organisms (LC50 < 1 mg/l for fish, PNECaqua = 0.74 µg/l) and has a potential to accumulate in biota. Therefore, an exposure assessment and, if then indicated, an environmental risk assessment is recommended. Environmental exposure during production at the Sponsor company is adequately controlled.
SIDS Initial Assessment Report

1 IDENTITY

1.1 Identification of the Substance

CAS Number: 115-86-6
IUPAC Name: Triphenyl phosphate / TPP
Molecular Formula: C_{18}H_{15}O_{4}P
Structural Formula:

Molecular Weight:
Synonyms: Phosphoric acid, triphenyl ester

1.2 Purity/Impurities/Additives

The purity of the substance is given with >= 99.6 % w/w (Bayer AG, 2002a).

1.3 Physico-Chemical properties

Triphenyl phosphate is a solid substance at room temperature with a melting point of about 48 - 50 °C and a boiling point of 245 °C (at 14.6 hPa) (Merck Index, 1996). With a density of 1.2055 g/cm³ at 50 °C triphenyl phosphate is heavier than water (Lide, 1995). The vapour pressure has been measured and extrapolated to 25 °C with 0.000835 Pa (Dobry and Keller, 1957). Log K_{OW} is measured with 4.6 (Saeger et al., 1979).

In older literature, triphenyl phosphate is said to be insoluble in water. The substance's solubility has been determined taking several testing options into account:

- distilled water: 1.9 mg/l at 20 °C (Saeger et al., 1979)
- buffered dist. water (pH 4.5 - 9.5): 1.4 - 1.6 mg/l at 21 °C (Howard and Deo, 1979)
- lake/river water (pH 7.8 - 8.2): 0.2 - 0.3 mg/l at 21 °C (Howard and Deo, 1979)
- seawater (pH 7.6 - 8): 0.1 – 0.6 mg/l at 15 °C (Hill and Morgan, 1988)

Triphenyl phosphate shows pH dependent hydrolysis to diphenyl phosphate and phenol (Howard and Deo, 1979) in distilled water:

- pH 5: t_{1/2} > 28 d at 25 °C (Mayer et al., 1981)
- pH 7: t_{1/2} = 19 d at 25 °C (Mayer et al., 1981)
- pH 8.2: t_{1/2} = 7.5 d at 21 °C (Howard and Deo, 1979)
- pH 9: t_{1/2} = 3 d at 25 °C (Mayer et al., 1981)
- pH 9.5: t_{1/2} = 1.3 d at 21 °C (Howard and Deo, 1979)
2 GENERAL INFORMATION ON EXPOSURE

Triphenyl phosphate is manufactured by an endothermic reaction of phenol with phosphorus oxychloride. Subsequent distillation leads to purification of triphenyl phosphate (Bayer AG, 2002a).

Environmental Releases

Releases into the environment may occur during production of triphenyl phosphate, during its use as a flame retardant in polymer and other applications as well as during the service life and waste disposal of products containing triphenyl phosphate as flame retardant. Also accidental spill and leakage of hydraulic liquids in different application areas can be a source of environmental contamination.

Readily available information on exposure from production of the chemical in the sponsor country at Bayer AG is stated in the following.

Waste water leaving the production facility is lead into an industrial biological waste water treatment plant (WWTP). Triphenyl phosphate is monitored daily at the outlet of the WWTP with a routine determination limit. No triphenyl phosphate had been detected with the determination limit of 20 µg/l. As worst case for the receiving water a PEC of < 0.03 µg/l is calculated, taking the determination limit of 20 µg/l, the dilution factor (700), and the 10 percentile of the receiving river low flow (1050 m³/s) into account. Sewage sludge from the industrial WWTP is burnt. Thus there is no emission to the geosphere by sludge application. The exhaust from production of triphenyl phosphate is connected to filters as well as air washers. Thus during normal operation no triphenyl phosphate is emitted. Following the last Official Emission Declaration in 2000 less than 25 kg/a triphenyl phosphate were emitted into the atmosphere (Bayer AG, 2002a).

No data about releases at other production or processing/application sites or from products during their life-cycle are available.

Monitoring

Monitoring data of indoor air sampling at residential and public buildings showed triphenyl phosphate concentrations of 0.1 µg/m³ at maximum in Sweden (Carlsson et al. 1997), Germany (Hansen et al. 2001), and Japan (Otake et al. 2001).

Triphenyl phosphate was found in the inlet and outlet of a wastewater treatment plant and in several sampling sites in the Delaware river, which was the receiving water of effluent (Sheldon and Hites 1979). Highest concentrations were measured in the sewage treatment plant inlet (16 µg/l) and in its outlet (2 µg/l), indicating a > 85 % elimination during wastewater treatment. The concentrations measured in samples from several sites in the vicinity of the outlet were consistent with the effluent being the major source of triphenyl phosphate in the Delaware in this sampling area. Drinking water made from contaminated river water (0.2 µg/l) without activated carbon filtration contained traces of triphenyl phosphate (0.03 µg/l).

Fish, water, and sediments were sampled in several industrialized and non-industrialized areas of the USA (Mayer et al. 1981). Triphenyl phosphate was detected in

- 32 of 63 water samples (limit of detection 0.1 µg/l; concentrations in water up to 7.9 µg/l). The geometric mean of triphenyl phosphate concentrations in water (calculated using one half of detection limit for samples reported as non-detectable) was 0.12 µg/l
- 13 of 40 sediment samples (limit of detection 0.01 µg/g; concentrations in sediment up to 4 µg/g)
- 16 of 82 fish (limit of detection 0.1 µg/g; concentrations in fish up to 0.6 µg/g).
Streams in the USA have been monitored at sampling sites susceptible to contamination e.g. downstream of intense urbanization and livestock production in 1999 and 2000. Triphenyl phosphate was found in 14.1 % of 85 samples with a median = 0.040 µg/l and a maximum value of 0.22 µg/l (Kolpin et al. 2002).

Less recent sampling of river Ruhr in Germany at 20 sites from well to mouth into river Rhine showed triphenyl phosphate concentrations up to 0.280 µg/l (region with heavy industry and mining). In different small tributaries of the river Ruhr mean concentrations of 0.4 µg/l were found. In a small creek which was dominated by the outflow of a sewage treatment plant, 2 µg/l were found. In the canal Emscher (Germany) concentrations up to 3.4 µg/l were measured. This sewer cannot be regarded as natural stream. Before entering the river Rhine the Emscher water is lead through a sewage treatment plant. No measured data from the outlet of this sewage treatment plant are available. In groundwater of the Dortmund waterworks area no triphenyl phosphate could be detected (limit of detection 1 ng/l) (Lenhart and Lemm 1993).

In the effluent from one out of three large wastewater treatment plants examined in Sweden (treating both domestic and industrial wastewater), triphenyl phosphate was found in a concentration of 3 µg/l (Paxéus, 1996).

2.1 Production Volumes and Use Pattern

Production volume

The worldwide (excluding East Europe) production of triphenyl phosphate is estimated to about 20 000 to 30 000 tons by app. 15 producers in year 2000. Thereof about 25 % is estimated to be produced in West Europe, about 40 % is estimated to be produced in the USA, and about 35 % is estimated to be produced in Asia. There is no information about production and use in East European countries.

Use

Triphenyl phosphate is known as a product with manifold fields of applications regarding its qualities in particular as a flame retardant.

Major application areas for triphenyl phosphate are the use as a flame retardant in PVC (about 50 %) where it has also plasticizing properties, but also as a flame retardant in polymers (about 22 %) and printed circuit boards (about 11 %), and in photographic films (about 7 %).

Minor areas (about 10 %) are covered by the use of triphenyl phosphate in hydraulic liquids (main area), and adhesives, inks, and coatings (minor area).

In Denmark, 10 products containing 0 - 2 % triphenyl phosphate had been registered amounting to a total of about 6 t/a triphenyl phosphate. They were allocated to a wide variety of industry groups as indicated already above. Of the 10 products four were registered with consumer relevance, all belonging to the industry group 'paints, laquers and varnishes' with a total of < 1 t/a (Danish Product Register 2002).

In Switzerland, altogether 82 products containing triphenyl phosphate had been registered, among them 4 products classified in the group 'consumers'. These consumer products were allocated to wood protection agents, adhesives and fillers, metal polishers, and detergents/soaps. 52 of the 78 products used professionally belong to the category lubricants/heat transport media, the remaining products are scattered to the categories indicated already above. Two fungicide products contain traces/impurities of triphenyl phosphate (0 - 0.1 %) (Swiss Product Register 2002).
According to the Swedish Product Register (2002) triphenyl phosphate is contained in 30 products with a total quantity of 84 t/a. None of these products is available to consumers.

In the Norwegian Product Register (2002) 11 products containing a total quantity of 25 t are registered.

2.2 Environmental Exposure and Fate

2.2.1 Calculated overall distribution pattern

The environmental distribution of triphenyl phosphate was calculated according to the Mackay Level I model taking into account a vapour pressure of 8.35 x 10^-4 Pa, a water solubility of 1.9 mg/l, and a log K_{OW} of 4.6. Corresponding to this calculation, triphenyl phosphate is mainly distributed in the following manner: to soil with 43.9 %, to sediment with 41.0 %, to water with 14.3 %, to air with 0.7 %, to suspended matter with 0.07 %, and to biota with 0.03 % (Bayer AG, 2002b). Based on water solubility (1.9 mg/l) and vapour pressures (1.6 x 10^{-4} – 1.07 x 10^{-3} Pa) Henrys’ law constants in the range of 0.018 – 0.036 Pa m^3/mol were calculated (Boethling and Cooper, 1985). According to the criteria of Thomas (1990) these values indicate hardly any volatilisation from an aqueous solution.

2.2.2 Stability in Water

In several experiments with buffered distilled water and unbuffered natural waters, the kinetics of triphenyl phosphate hydrolysis was investigated. Half-lives of 1.3 and 7.5 days were found in buffered distilled water at pH 9.3 and 8.2, respectively. Half-lives in natural waters were found to be 1.1 – 2.0 days at pH 8.2. Reported hydrolysis products were diphenyl phosphate and phenol (mentioned in the analytical procedure only). Further hydrolysis of diphenyl phosphate was considered much slower as monophenyl phosphate was not found in these experiments, and diphenyl phosphate was considered stable under alkaline conditions with reference to an older paper (Howard and Deo, 1979).

2.2.3 Biodegradation

In a test on ready biodegradability (modified MITI I Test which corresponds to OECD guideline 301C) 83 - 94 % of the applied triphenyl phosphate were biodegraded after 28 days of incubation (CITI, 1992). Therefore, the substance can be classified as readily biodegradable.

In a test simulating an aerobic sewage treatment plant, conducted according to OECD guideline 303A, a mean elimination rate of 93.8 % after 20 days was determined, using an initial concentration of 5 mg/l. The adaptation phase was 14 days Less than 1 % of the applied TTP was found in the sludge (Ciba-Geigy, 1982).

Triphenyl phosphate was also shown to be biodegraded under anaerobic conditions (N\textsubscript{2} purged respirometer flasks) with river sediment. Primary degradation amounted to 31.1 % after 3 days and 87.9 after 40 days. CO\textsubscript{2} evolution showing ultimate degradation was 0.8 % after 3 days and 21.9 % after 40 days of incubation. However, the authors concluded due to the high CO\textsubscript{2} evolution that incubations probably were not strictly anaerobic (Muir et al., 1989).

The stability of triphenyl phosphate in German BBA standard soil 2.2 (loamy sand) was investigated with radiolabelled triphenyl phosphate (5 mg/kg) under aerobic and anaerobic conditions. In both cases degradation of the test substance was observed with DT\textsubscript{50}-values of 37 and 21 days, respectively. After a period of 101 days in the aerobic experiment 26.6 % of the applied...
radioactivity was extractable from the soil whereas 26.4 % remained bound. 48.3 % of the applied radioactivity was recovered as the final degradation product CO₂. The soil extracts were analysed by HPLC and TLC. The amount of triphenyl phosphate decreased steadily and accounted for 46.6 % of that applied after 32 days. Degradation slowed down and 101 days post-treatment 20.2 % of the applied test substance was recovered unchanged. Under anaerobic conditions 35.8 % of the applied radioactivity was extractable after 102 days of incubation while 24 % remained bound. 40.4 % of the applied radioactivity was recovered as the final degradation product CO₂. At the end of exposure 31.4 % of the applied test substance remained unchanged. In experiments with heat sterilized soil ca. 85 % of the applied radiolabelled triphenyl phosphate was recovered after 101 days of incubation; diphenyl phosphate was detected as a degradation product (7.1 % after 13 days; 1.4 % after 101 days); unknown degradation products were not detected and carbon dioxide release was < 0.1 %. (Anderson et al. 1993).

Distribution in sewage treatment plant

According to the model Simpletreat (EU TGD) the following distribution in sewage treatment plants can be estimated for triphenyl phosphate (readily biodegradable k = 1 h⁻¹, log KOW = 4.6, Henry: 0.02 - 0.04):

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>air</td>
<td>0 %</td>
</tr>
<tr>
<td>sludge</td>
<td>63 %</td>
</tr>
<tr>
<td>water</td>
<td>6.7 %</td>
</tr>
<tr>
<td>degraded</td>
<td>30.3 %</td>
</tr>
<tr>
<td>removal</td>
<td>93.3 %</td>
</tr>
</tbody>
</table>

This estimate is rather consistent with the data of Sheldon and Hites (1979) from a wastewater treatment plant in the vicinity of the Delaware river. This wastewater treatment plant eliminated > 85 % of the incoming triphenyl phosphate (see chapt. 2, Monitoring).

Similarly, 92 % triphenyl phosphate was eliminated by a wastewater treatment plant of Osaka City, Japan. Triphenyl phosphate influx concentration was 0.054 - 2.12 µg/l (mean 0.241 µg/l), and effluent concentration 0.005 - 0.082 µg/l (mean 0.019 µg/l) (Fukushima and Kawai, 1986).

2.2.4 Bioaccumulation

In a continuous flow through test (0.01 mg/l triphenyl phosphate) with *Oryzias latipes* and an exposure period of 18 days a bioconcentration factor (BCF) of 144 (whole body) was determined. As the uptake of triphenyl phosphate in fish increased gradually till day 18 of exposure, it is not clear whether equilibrium was reached. The biological half-life in fish tissue was reported to be 1.2 h (Sasaki et al., 1982). In a static test with *Carassius auratus* a BCF of 110 (whole body) was determined after 72 h of exposure to 0.25 mg/l triphenyl phosphate (Sasaki et al., 1981). Also for this study it is unclear whether equilibrium was reached. In an insufficiently documented study with fry of *Oncorhynus mykiss* (previously *Salmo gairdneri*), Mayer et al. (1981) found a BCF of 271 (BCF range: 132 – 364).

In another insufficiently documented study, the distribution of ¹⁴C-labelled triphenyl phosphate was followed within artificial ponds containing duckweed (*Lemna minor*), cattail (*Typha sp.*), and fish (*Pimephales promelas*), over a time period of 105 days (data reported for the first 10 days). Although no reliable data on accumulation of triphenyl phosphate can be derived from this study,
BCFs for *Lemna minor* and *Typha sp.* were stated to be < 50 (duckweed 43, cattail < 1), and 68 - 160 for *Pimephales promelas* (Muir et al., 1982).

As the BCFs are related to the parent compound, there is no information on possible accumulation of stable metabolites. The experimentally obtained BCF value is supported by the SRC-BCFWIN v2.14 (2000) (Bayer AG, 2002b) estimation with a correction factor for phosphate ester chemicals. The calculated BCF value for fish is 113.3. On the basis of the experimental results a moderate bioaccumulation potential for triphenyl phosphate can be assumed.

In 1990 dolphins (*Tursiops truncatus*) were collected during an unusual mortality event in the Gulf of Mexico. The cause of death could not be identified. For gathering background information on organic chemicals, metals and selenium, blubber of the dead dolphins had been analyzed. Several substances, among them triphenyl phosphate, were detected in the blubber. For sucklings a mean triphenyl phosphate content of 863 ng/g lipid (range: 17 – 3790 ng/g lipid) was found, in immature animals the mean concentration was 68 ng/g lipid (range: 19 – 244) and in adult females the mean concentration was 30 ng/g lipid (range: 19 – 42). The mean triphenyl phosphate concentration in adult males from different locations was in the range of 25 – 56 ng/g lipid with single values in the range of 15 – 142 ng/g lipid (Kuehl and Haebler, 1995).

These findings indicate that although triphenyl phosphate is not persistent in the environment, an accumulation via the food chain may occur.

2.2.5 Other Information on Environmental Fate

Behaviour in natural waters with sediment:

In an experiment with pond (silt clay: 3.7 % organic carbon), river (silty: 2.3 % organic carbon), and sand sediment (0.1 % organic carbon), spiking of the sediment with 50 and 500 µg ¹⁴C-triphenyl phosphate/kg showed that after 2 days of equilibration, 79 -89 % of the radioactivity remained in the sediment (Muir et al. 1983).

Fairchild et al. (1987) treated a stream ecosystem (50 m total length, with two pools) with triphenyl phosphate -contaminated sediment (locally obtained topsoil; 0.7 % organic carbon; triphenyl phosphate application by spraying of triphenyl phosphate solved in acetone on soil). The contaminated sediment was added once a week to the stream of well water, according to the experimental design in increasing amounts of triphenyl phosphate, beginning at 55 mg/kg and doubled each week up to a load of 2100 mg/kg (measured concentrations). During addition of triphenyl phosphate-contaminated sediment, a water flow of 40 l/s ran through the ecosystem half of which was discharged and replaced by fresh water. Already within the first hours after sediment addition the concentration of triphenyl phosphate has decreased to about 25 % of the concentration present in the applied topsoil. No ageing after application of triphenyl phosphate on the soil as a slurry was allowed. The authors discuss that biological degradation, desorption, and dilution were probably important factors in the loss of triphenyl phosphate from water and sediments during that study.

Behaviour in soil:

Anderson et al. (1993) investigated the adsorption behaviour of radiolabelled triphenyl phosphate in three soil types in experiments carried out in accordance with a method recommended by the US-EPA. They determined soil sorption coefficients (K_{OC}) of 2514, 2756, and 3561 with silty clay, silt loam, and loamy sand (organic carbon content: 0.64 - 2.60 %), indicating a strong to very strong sorption potential to the organic matter of soil according to the criteria of Blume (1990). Depending on the soil properties, partial degradation of triphenyl phosphate by hydrolysis was observed during the equilibrium period (equilibrium was reached after 48 hours). Maximum abiotic degradation
occurred in silty clay. Diphenyl phosphate was identified as main degradation product. Due to the partial degradation of triphenyl phosphate during the experiment the data obtained describe both the behaviour of the test substance itself and of the abiotic degradation product diphenyl phosphate.

Triphenyl phosphate in soil has been shown to be degraded by microorganisms with DT_{50} of 37 and 21 days both, under aerobic and anaerobic conditions respectively (see section 'Biodegradability of triphenyl phosphate').

Behaviour in air:

A calculation on the indirect photolysis shows the following result: Triphenyl phosphate entering the atmosphere is expected to rapidly be photodegraded by reaction with hydroxyl radicals. The calculated half-life $t_{1/2}$ via AOPWIN, v 1.90 is approx. 12 hours assuming an atmospheric OH radical concentration of 1.5×10^6 molecules/cm³ (Bayer AG, 2002b).

2.3 Human Exposure

2.3.1 Occupational Exposure

Occupational exposure to triphenyl phosphate is most likely to occur through inhalation and dermal contact.

Workplace

In Germany the Board on Dangerous Substances (AGS) has decided to adopt (with revision) the ILO exposure limit of the Netherlands for triphenyl phosphate with 3 mg/m³ for the inhalable fraction (8 h time-weighted average). This exposure limit is laid down in German Technical Guidance TRGS 900.

At Bayer AG, triphenyl phosphate is produced in a closed system. Investigations on triphenyl phosphate at the workplace have been performed according to German Technical Guidance TRGS 402. This includes a survey in the working area for possible exposition at different work situations and subsequent control measurements. To protect workers from exposure to triphenyl phosphate at workplace, several different precautionary and protective measures are taken. These measures include engineering controls, periodical personal training according to German Technical Guidance TRGS 555 including signature of the workmen, and appropriate personal protection equipment prescribed in detail for different work situations (e.g. during maintenance and repair work).

Workplace measurements (8 h total shift, time-weighted average) have been carried out at the Bayer production site and were below 3 mg/m³.

Down-stream users of triphenyl phosphate are informed by way of a material safety data sheet about safe handling of the substance.

The German exposure limit value is in accordance with the other European countries' limit values. Additionally, in the UK there is a short term limit value of 6 mg/m³ over a 15 min period (RTECS, 2004). In the USA there is a NIOSH (1997) recommended exposure limit (REL) of 3 mg/m³ for up to a 10 hour workday during a 40-hour workweek.

2.3.2 Consumer Exposure

As cited in chapter 2 triphenyl phosphate has been monitored by indoor air sampling at residential and public buildings. Ambient air showed triphenyl phosphate concentrations up to 0.1 µg/m³ in
Sweden, Germany, and Japan. For further information see chapt. 2 of this report: 'General Information on Exposure'.

Trialkyl and triaryl phosphates were surveyed in United Kingdom total diet samples. The total phosphates levels (tributyl phosphate, triphenyl phosphate, trioctyl phosphate) ranged from (mean) 0.05 mg/kg for beverages to 0.2 mg/kg for unspecified meat products and 0.25 mg/kg for offal. The mean daily intake for these products was calculated to be approximately 0.1 mg/d. However, the triphenyl phosphate level was not reported (Gilbert et al. 1986).

3 HUMAN HEALTH HAZARDS

3.1 Effects on Human Health

3.1.1 Toxicokinetics, Metabolism and Distribution

Only one valid study on the metabolism of triphenyl phosphate was found in the literature (Sasaki et al. 1984). Triphenyl phosphate was incubated with rat liver microsomal without NADPH and soluble fractions and found by gaschromatography that triphenyl phosphate was decomposed to diphenyl-phosphate as the major metabolite. Therefore, arylesterase in the microsomes contributes to triphenyl phosphate metabolism. The metabolic reactions were inhibited almost completely by SKF-525A and carbon monoxide in the absence of NADPH whereas KCN, NaN₃, dipyridyl and EDTA showed little effect. Therefore, mixed function oxidase system in the microsomes plays a central role in the metabolism of triphenyl phosphate.

Conclusion: Triphenyl phosphate is degraded by hydrolysis in rat liver homogenate to diphenyl phosphate as the major metabolite.

3.1.2 Acute Toxicity

Toxicity studies were performed mainly in rats and hens, but mice, rabbits, cats and guinea pigs also were used, however no guideline study is available. Nevertheless, the acute toxicity can be evaluated from the available evidence.

There are a number of studies using intraperitoneal, subcutaneous and intramuscular injection. The valid among these studies confirm the low level of toxicity. These routes of administration are not considered relevant for triphenyl phosphate exposure in man and are therefore not included. There are sufficient data on toxicity via oral and dermal routes.

Studies in Animals

Inhalation

No valid studies are available regarding the acute inhalation of triphenyl phosphate.

Dermal

Two dermal toxicity studies were performed in 1976 and 1977.

2 groups of 5 albino rabbits were treated each with a dose of 10 000 mg/kg bw on either intact or abraded skin; no adverse effects nor mortality were observed (no further details reported). The LD₅₀ was above 10 000 mg/kg bw (FMC 1975).

Johannsen et al. (1977) occlusively applied undiluted triphenyl phosphate to the intact dorsal skin of male and female New Zealand White rabbits for 24 hours. The LD₅₀ was above the maximum dose
of 7900 mg/kg bw after 14 days of observation, after which they were sacrificed and subjected to gross autopsy (no further detail reported).

Conclusion: The toxicity of triphenyl phosphate after dermal application is very low with an LD$_{50}$ of above 7900 mg/kg bw in rabbits.

Oral

In 1976 a limit test in 5 male, 5 female Wistar rats was reported. Animals were treated by intragastric intubation of an aqueous suspension using a single dose of 20 000 mg/kg bw. The animals were observed daily for 14 days following administration of the test material. No mortality was observed. Sporadic visceral hemorrhages at necropsy were the only effects (FMC Industrial Chemical Division, 1975).

In a study by Ciba-Geigy (1954) groups of 5 male and female rats were treated with up to 5000 mg/kg bw triphenyl phosphate and observed for 8 days. Animals showed neither symptoms nor mortality. Houghton and Company (1962) determined for rats a LD$_{50}$ from over 6400 mg/kg bw.

Sutton et al. (1960) reported an experiment using a dose of 3000 mg/kg bw in male rats leading to no treatment related mortality nor any clinical signs of toxicity at all.

The acute study in rats by Johannsen et al. (1977) employed doses up to 15 800 mg/kg bw in male and female Sprague-Dawley rats and gave a LD$_{50}$ of 10 800 mg/kg bw after 14 days of observation.

In mice only 2 reliable studies are available. In a study by Ciba-Geigy (1954) groups of 5 male and female mice were treated with up to 5000 mg/kg bw triphenyl phosphate and observed for 8 days. Animals showed slight stupor for an unspecified time, but none of them died.

Sutton et al. (1960) reported an experiment using a dose of 3000 mg/kg bw in male mice leading to no mortality nor any clinical signs of toxicity at all. The partial inhibition of choline esterase activity in the whole blood was interpreted as a sign of absorption of triphenyl phosphate although a causal correlation was not proven. Choline esterase activity was reduced after doses of 10 to 500 mg/kg bw to 87.1 to 30.4 % of control. No cholinergic or other symptoms were reported.

A number of other less well documented studies in rats, mice, guinea pigs, hens (see 3.1.8.3) and rabbits confirmed the low level of toxicity and found the LD$_{50}$ values to be greater than the maximum doses of 3000 to 12 500 mg/kg bw (Sutton, 1960; Ciba-Geigy, 1954; 1980; 1981; Henschler, 1958; Houghton and Company, 1962; Johannsen, 1972; Smith et al., 1932).

Conclusion: After acute oral administration in rats, mice, rabbits and guinea pigs the LD$_{50}$ values are in a range above 3000 to above 20 000 mg/kg bw. This is far above the limit dose (2000 mg/kg bw.) applied in modern studies, which indicates a low level of toxicity after oral administration. Only 1 study in mice with limited documentation gave a value of 1320 mg/kg bw. Non-limit tests (i.e. those with doses above 2000 mg/kg) generally demonstrate low toxicity with LD$_{50}$s greater than 5000 mg/kg bw.

Conclusion

There is a low level of acute toxicity after oral and dermal administration.
3.1.3 Irritation

Skin Irritation

Studies in Animals

The skin irritation potential of triphenyl phosphate was determined in a study according to international standards (Bayer AG, 1990; OECD 404). Three rabbits were treated for 4 hours by occlusively applying 500 mg of moistened test substance to the clipped dorsal skin (2 x 3 cm) and observed daily for 14 days. Erythema and edema formation were evaluated. No signs of irritation were detected. The irritation index was 0.0.

The findings are confirmed by other studies carried out between 1960 and 1983 (FMC, 1975; Ciba-Geigy, 1983a; Sutton et al., 1960; Antonyuk, 1969, 1974)

Conclusion: triphenyl phosphate does not possess an irritation potential on the skin.

Eye Irritation

Studies in Animals

The irritation potential of triphenyl phosphate on mucous membranes of the rabbit eye was determined by Märtins according to OECD Guideline 405 in 1990. The treated eyes were rinsed 24 hours after instillation. No sign of irritation was detected (Bayer AG, 1990).

Similar findings were recorded in a study according to US regulations (16 CFR 1500.42), employing 4 hours treatment without rinse in 6 rabbits (group 1) and rinsing after 4 seconds in 3 additional rabbits (group 2). In group 1 conjunctival effects were observed in all six animals. These effects cleared during the 72-hour observation period. In group 2 no ocular effects were observed in any of the three animals. The material was found mildly and transiently irritating when not washed out (FMC, 1975).

A minimal irritating potential of triphenyl phosphate in 6 New Zealand White rabbits was also found in another study according to US regulations. 100 mg of the test compound were instilled into the conjunctival sac of the left eye. The eyelids were then held closed for 1 second. After 30 seconds the compound was flushed out of the eyes of three of the rabbits. Very slight reactions were seen in 2/3 washed and 3/3 unwashed eyes 1 hour after compound application. The reactions were less severe at 24 hours although all washed and unwashed eyes were affected. 3/3 washed eyes and 1/3 unwashed eyes were normal at 48 hours, 1 unwashed eye at 27 hours and the remaining unwashed eye at day 6. Slight opacity and damage to the surface epithelium was seen in 1 unwashed eye at 24 hours. This was no longer present at 48 hours minimal irritating potential of triphenyl phosphate in New Zealand White rabbits was found (highest score 7; score 0 - 10 minimally irritant) (Ciba-Geigy, 1983b).

Conclusion

The irritation potential of triphenyl phosphate on the mucous membrane of the eye is very low.

3.1.4 Sensitisation

Studies in Animals

No animal data are available regarding the sensitisation potential of triphenyl phosphate.
Studies in Humans

Single human cases have been reported with allergic dermatitis from triphenyl phosphate through the years (Andersen, 1977; Berkhoff, 1938; Carlsen et al., 1986; Hjorth, 1964; Pegum, 1966; Spirig, 1995).

Among the 23,192 patients patch tested from 1950 to 1962, positive reactions to cellulose acetate film containing 7 to 10% triphenyl phosphate and 3 to 4% phthalic esters occurred in 15 (0.065%). The sensitivity to cellulose acetate film was analysed in only two cases, in both of which the sensitizer was found to be triphenyl phosphate. In the others it may have been either triphenyl phosphate or the phthalic ester (Hjorth, 1964).

Tarvainen tested 343 patients and found none reacting to triphenyl phosphate (Tarvainen, 1995).

This low incidence was confirmed by another study (Kanerva et al., 1997; 1999), which tested 174 patients and revealed only irritation reactions in 1 patient, but no sensitisation.

Kayser and Schlede (BgVV, 2001) also concluded that there are only scarce indications of a contact sensitising action.

Conclusion

No animal data regarding skin sensitisation are available. There are few human case reports showing evidence of skin sensitisation. The incidence of skin sensitisation is very low.

3.1.5 Repeated Dose Toxicity

Studies in Animals

Rats were treated by dietary administration of triphenyl phosphate for 35 days. Three groups of 5 male animals of the Holtzman strain per group were employed. Doses were 0 (control), 0.5 and 5.0% (estimated doses: ~350 - 3500 mg/kg bw/day) in the diet at the start. The high dose animals refused food and lost weight. Therefore the dose was reduced to 0.1% after three days. Parameters recorded were clinical observations, body weights (3 times/week), food consumption, and hematology (hemoglobin content, cell volume, red cell count, total and differential white cell count). At the end of the treatment period 2/5 rats were kept for a further 14 day recovery period. All animals were killed and subjected to gross necropsy. Organ weights (kidneys and livers) were recorded (no further examinations - clinical chemistry, histopathology, urinalysis - reported).

Treatment caused a slight depression of body weight gain and an increase of liver weights at a level of 0.5% (estimated dose: ~350 mg/kg bw/day) in the diet. No findings were recorded in clinical observation, haemoglobin content, cell volume, red cell count, total and differential white cell count and at necropsy. A concentration of 0.1% in the diet (estimated dose: ~70 mg/kg bw/day) was without any effect (= NOEL) (Sutton et al., 1960).

Two four months studies were conducted in rats to determine possible effects on the immune or the nervous system. (0, 0.25, 0.5, 0.75, and 1% of triphenyl phosphate in the diet corresponding to doses of about 0, 161, 345, 517 and 711 mg/kg bw/day). The animals were observed for clinical symptoms. Body weights and food consumption were recorded weekly. The neurotoxicity was assessed in open field, accelerating rotorod, forelimb grip strength and negative geotaxis examinations. These parameters were determined 4 times at the end of each month of treatment. Immunotoxicity was assessed by measurements of the weights of lymphoid organs, immunohistochemical evaluation of spleen, thymus, lymph nodes, and the humoral response to antigens.
Only limited data are reported and a number of standard parameters of repeated dose toxicity is missing, e.g. organ weight measurement and histopathology of organs other than lymphoid organs (spleen, thymus, lymph nodes) as well as haematology and clinical chemistry other than serum proteins. Nevertheless, the studies show that triphenyl phosphate did not interfere with the general well being and behavior of the animals at levels of up to 1 % in the diet for 4 months. At the dose levels of 0.5 to 1 % a slight but statistically significant reduction of growth rate was detected as the only change in one of the two studies (Sobotka et al., 1986), whereas an reduced growths rate was recorded at the 1 % dose level in the other study (Hinton et al., 1987), leading to NOEL’s of 161 or 517 mg/kg bw/day. The studies are described in detail under Chapter 3.1.8.

In a study on fertility and developmental toxicity in Sprague-Dawley rats dietary doses of 0, 0.25, 0.50, 0.75, 1.0 % corresponding to 0, 166, 341, 516 or 690 mg/kg bw/day were administered to forty males and forty females per group for 4 months and during mating and gestation. The animals were treated further throughout mating and gestation and killed at day 20 of gestation There was no evidence of general toxicity or reproductive toxicity after exposure to the chemical. The NOEL given by the authors for male and female fertility, maternal toxicity, and developmental toxicity was 1 % in the diet (690 mg/kg bw/day) (for more detail. see chapter 3.1.7; Welsh et al., 1987).

The toxicity of triphenyl phosphate after repeated dermal exposure was determined in rabbits. Ten male and 10 female animals per group were treated on clipped, intact (half of the animals) and abraded skin (half of the animals), five times per week for three weeks with doses of 0, 100 and 1000 mg/kg bw/day under open conditions. Ingestion was prevented by means of a collar. Triphenyl phosphate was applied as a 50 % solution in ethanol. The application volume was 0.2 or 2 ml/kg bw/day. Control animals were treated with 1 ml/kg bw of destilled water.

The findings detected at the site of treatment as well as all other parameters (mortality, clinical symptoms, body weight, hematology, clin. chemistry, necropsy, organ weights, histopathology of > 30 tissues (including reproductive organs and nervous system)) were not different from control animals. The only treatment related effect was a depression of acetyl cholinesterase in plasma, erythrocytes and brain of triphenyl phosphate treated rabbits. No clinical or histological correlate was found. No quantitative data are reported for this endpoint. This effect is not considered as of toxicological relevance. (Monsanto, 1979).

Conclusion

Based on the available data, the toxicity after repeated treatment of rats or rabbits with triphenyl phosphate is low. The majority of the available studies did not report a wide variety of parameters, but taken together the studies using dietary doses of up to 711 mg/kg bw/day or dermal doses of up to 1000 mg/kg bw/day cover clinical observations, body weight gain, food consumption, haematology, clinical chemistry, organ weights as well as histopathology. After 5 weeks of treatment a slight depression of body weight gain and an increase of liver weights at a level of 0.5 % (estimated dose: ~ 350 mg/kg bw/day) were seen. A concentration of 0.1 % (estimated dose: ~ 70 mg/kg bw/day) in the diet was without any effect.

Limited studies with treatment for 4 month at dose levels of up to 1 % in the diet (~ 711 mg/kg bw/day) confirm this effect on growth. The general well being, immune and nervous systems were not affected. The NOEL was 161 mg/kg bw/day due to reduced body weight gain with >= 345 mg/kg bw/day in one of the two studies. A subchronic study on developmental toxicity and fertility revealed a NOEL for male and female fertility and maternal toxicity of 1 % in the diet (690 mg/kg bw/day). The low general toxicity was confirmed also after dermal exposure of 100 or 1000 mg/kg bw in rabbits for 15 days without any sign of toxicity besides an unquantified depression of acetylcholinesterase as the only dose related effect. The overall NOEL is 161 mg/kg bw/day.
3.1.6 Mutagenicity

Gene Mutation

The potential of triphenyl phosphate to induce gene mutations was examined in the Ames test (Monsanto, 1978a) without any signs of mutagenicity in *S. typhimurium* TA 98, TA 100, TA1535, TA1537, TA1538 and *S. cerevisiae* D4 with and without metabolic activation by S-9-mix from Aroclor-induced adult male Sprague-Dawley rats. The range of concentrations was 1 to 1000 µg/plate.

Similarly Zeiger found no mutagenicity in *S. typhimurium* TA 98, TA 100, TA 1535, TA 1537, TA 1538 with and without activation by S9 mix from aroclor 1254 treated rat livers. Bacteria were perincubated for 20 minutes at 37 °C. Experiments were performed in triplicate and repeated. Positive and negative controls were included. Test concentrations and cytotoxicity were not reported (Zeiger, 1987).

These results were supported by Kimmerle in *S. typhimurium* TA98 and TA100, at concentrations of 0 to 5000 µg/plate, with and without metabolic activation. (Kimmerle, 1984).

The mouse lymphoma test in L5178Y cells with (6.25 – 75 µg/ml) and without (3.13 – 50 µg/ml) metabolic activation showed no effects (Monsanto, 1978b).

Conclusion

Tests for gene mutations in bacterial as well as yeast and mammalian cells did not reveal any sign of mutagenicity.

Cytogenetic effects

Unscheduled DNA synthesis was examined by Schmuck (1989) in syrian hamster fibroblast cells at concentrations of 0.05 to 10 x 10^{-5} M. After 5 hours incubation without activation in the presence of 3H-thymidine. Triphenyl phosphate showed no genotoxic effect. (No further details given).

No other studies regarding cytogenetic effects are available.

Conclusion

An UDS-test in syrian hamster fibroblast cells showed no genotoxic effect. There is no test concerning chromosomal aberration.

3.1.7 Carcinogenicity

There are no long term carcinogenicity bioassays available. Male Strain A/St mice (20 animals/group, these animals show a very high sensitivity to carcinogens resulting in short latency periods and high tumor rates) were treated by intraperitoneal injection with 20 (18 doses), 40 (3 doses) or 80 mg/kg bw (single dose) of triphenyl phosphate (purity: 95 - 99.9 %) 3 times a week and observed for further 18 weeks. Afterwards lungs were examined for adenomas.

The survival rate was 18/20 in the 20 mg/ bw group, 3/20 in the 40 mg/kg bw group and 12/ 20 in the 80 mg/kg bw group.

Adenomas were seen only in the 80 mg/kg bw group with no significant increase of incidence (Theiss et al. 1977).
Conclusion

There are no long term carcinogenicity bioassays available. The strain-A-mouse lung adenoma assay gave no indication of a carcinogenic potential.

3.1.8 Toxicity for Reproduction

Fertility and developmental toxicity were examined in a dietary study in Sprague-Dawley rats at doses of 0, 0.25, 0.50, 0.75, 1.0 % corresponding to 0, 166, 341, 516 or 690 mg/kg bw/day. Forty males and 40 females per group were treated for 3 months and mated afterwards. Animals were treated further throughout mating and gestation and killed at day 20 of gestation (Welsh et al., 1987).

Studies in Animals

Effects on Fertility

The study included treatment of males and females for three months prior to mating throughout gametogenesis and during mating and gestation. No significant differences were recorded in the number of corpora lutea, implants, implantation efficiency, viable fetuses and the number of early or late deaths between treated and control rats. No significant signs of parental toxicity were detected. As there was no effect on the litter size (indirectly measured by the number of viable fetuses and implants) and both sexes were treated in the study, these findings indicate that fertility is not adversely affected by triphenyl phosphate in male and female rats. The NOEL was 690 mg/kg bw (Welsh et al., 1987).

In a dermal repeated dose toxicity study in rabbits there was no effect on the reproductive organs up to the highest dose of 1000 mg/kg bw (see chapter 3.1.5 for more detail; Monsanto, 1979).

Conclusion: fertility is not adversely affected by triphenyl phosphate in male and female rats up to the highest tested dose of 690 mg/kg bw daily after treatment during 3-4 months prior to mating and throughout mating and gestation.

Developmental Toxicity

Neither maternal toxicity nor changes in the types or numbers of anomalies in the fetuses were detected. All treated groups had significantly more fetuses with moderate hydroureter than the control group. In the opinion of the authors, the high baseline incidence exhibited in the control group and lack of a clear dose-related response make the biological significance of this finding unclear. There were also significantly more fetuses in the treated groups with moderately enlarged ureters in the region adjacent to the kidney than in the controls. Again, the incidence was not related to dose since a greater proportion of fetuses were affected in the lower dose levels than in two high levels. The average number of fetuses having at least two soft-tissue variations was significantly higher in the 0.25, 0.50 and 0.75 but not the 1 % triphenyl phosphate groups than in the control group. The 1 % group was only slightly, non-significantly higher than the control. The number of litters with fetuses having at least two soft-tissue variations was significantly greater only in the 0.5 an 0.75 % groups. The authors concluded that there was no evidence of bioaccumulation or increased reproductive toxicity after exposure to the chemical.

The NOEL given by the authors for male and female fertility, maternal toxicity, and developmental toxicity was 1 % in the diet (690 mg/kg bw/day) (Welsh et al., 1987).

Conclusion: No signs of developmental toxicity were seen up to the highest tested dose of 690 mg/kg bw/day daily in the rat.
Conclusion

There are no findings indicating adverse effects on fertility or the development of the fetus up to the highest tested dose of 690 mg/kg bw daily in the rat treated for 4 months during gametogenesis prior to mating and throughout mating and until day 20 of gestation.

3.1.9 Immunotoxicity

Five groups of 10 male and 10 female Sprague-Dawley rats were fed diets containing 0, 0.25, 0.5, 0.75, and 1% of triphenyl phosphate for 120 days. The animals were observed for clinical symptoms. Body weights and food consumption were recorded weekly. Blood samples were analysed for total protein and by electrophoresis of plasma proteins. Immunotoxicity was assessed by measurements of the weights of lymphoid organs, immuno-histochemical evaluation of spleen, thymus, lymph nodes, and the humoral response to antigens.

At the 1% dose level reduced growth rate was detected. There were no significant differences between immunized and non-immunized animals. The weights of lymphoid organs (spleen, thymus,) varied in a non-dose-dependent way. No significant changes were found in these organs and lymph nodes by histopathologic examination and no significant alterations of serum protein were detected. Electrophoresis revealed increased levels of alpha- and beta-globulin in male or. female rats but effects were similar at all dose levels, relative to the control group. Only non-dose-dependent variation was found in the humoral immune response to sheep red blood cells in female rats. (Hinton et al., 1987).

Conclusion: In a non-validated assay no effects were observed in a range of parameters of immune function in rats receiving oral doses up to ~ 700 mg/kg bw/day (1 %). The NOEL for immunotoxicity was 1 % (~ 700 mg/kg bw) of triphenyl phosphate in the diet and 0.75 % (~ 517 mg/kg bw) for all effects due to a slight reduction of body weight gain at the highest dose level. The significance of these results with respect to humans is not fully clear.

3.1.10 Neurotoxicity

Neurotoxicity is a potential adverse effect of many organophosphates. Some organo-phosphates also induce delayed neurotoxicity. Therefore triphenyl phosphate was tested for neurotoxicity in vivo and in vitro. It is recognized that the rat is a poor model for such delayed effects compared to the hen. Therefore the hen is, according to OECD guideline 418 (acute exposure), the standard test system to detect these effects.

There are several reports of the investigation of triphenyl phosphate for such effects. The endpoints determined were the inhibition of choline esterases, neuropathy target esterase (NTE) and clinical observations in hens and cats and a functional observationall battery in rats during subchronic exposure.

The earliest results regarding triphenyl phosphate were those being reported by Smith et al. in 1932, who treated 4 hens orally with doses of 500 to 2000 mg/kg bw without any effects.

These findings were confirmed by Hine et al. in 1956 at an oral dose of 1000 mg/kg bw. Animals were observed for their ability to walk for 14 to 36 days. Cholinesterase was determined in plasma, brain, and spinal cord. Microscopic sections were examined from brain, spinal cord, and sciatic nerve.

The birds did not show signs of paralysis and no histologic changes were detected. Cholinesterase activity was reduced to 39 to 65% in plasma depending on the substrate.
In 1958 Henschler and Bayer described an experiment in hens using oral doses of up to 10,000 mg/kg bw triphenyl phosphate (delivered in 2 - 3 days) in olive oil without any effect during the observation period.

Other authors (Aldridge and Barnes 1961) also found no sign of neurotoxicity after an oral dose of 500 mg/kg bw in hens after 3 weeks of observation, although they found a reduction of cholinesterase in blood of 60%.

The low acute oral toxicity of pure triphenyl phosphate in hens is confirmed by later studies. In 1977 Johannsen et al. treated 9 hens twice daily with 5000 mg/kg bw for 3 days and after an interval of 18 days for another 3 days. (total: 60 g/kg bw). Animals were sacrificed on day 42. Neither behavioural nor histological changes of nerve tissue were detected in any of the animals.

Swallow and Bradley did not detect any adverse effects in hybrid Rhode Island Red x Light Sussex hens treated orally with 12000 (Ciba-Geigy, 1980) or 2000, 3000, 5000, 8000, or 12500 mg/kg bw (Ciba-Geigy, 1981a) and observed for 2 to 3 weeks. No symptoms nor alterations at necropsy were noticed.

The activity of CHE was determined in a number of studies. Hine et al (1956) found a severe depression of plasma CHE (without signs of paralysis) in hens, which was confirmed by Sutton et al. (1960) in mice after oral, intraperitoneal or inhalative administration and by Aldridge and Barnes (1961) in hens.

Sutton also reported that choline esterase activity was reduced after doses of 10 to 500 mg/kg bw in mouse whole blood to 87.1 to 30.4 % of control. No cholinergic or other symptoms were reported. The partial inhibition of choline esterase activity in the whole blood was interpreted as a sign of absorption of triphenyl phosphate although a causal correlation was not proven.

Sutton et al. (1960) described further experiments in rats, mice, and guinea pigs using single doses of 3000 mg/kg bw in male and female animals leading to no mortality nor any clinical signs of toxicity at all. Additionally Sutton et al. (1960) found inhibitory effects in human blood in vitro. At a concentration of 6 x 10E-5 Mol/l effects were most pronounced in human erythrocytes, human plasma and mouse whole blood with residual activities of 21, 40 or 57 %, resp. (unspecified duration of incubation). At a concentration of 6 x 10E-7 Mol/l no inhibition was recorded.

Neuropathy target esterase, an enzyme involved in the development of delayed neuropathy after organophosphate exposure in animals, was determined by Johnson (1975a, 1975b) in hen brain homogenate. Johnson (1975b) found a structure activity relationship (SAR) in a large series of organophosphorus compounds that indicates no neurotoxic potential for triphenyl phosphate. This SAR was confirmed by Johannsen et al. (1977).

Padilla et al. (1987) also found that triphenyl phosphate did not inhibit NTE in vitro in the microsomal fraction of rat brain and spinal cord tissues at concentrations of 1 to 10 µM after 20 minutes of incubation. At 100 µM NTE was inhibited to about 60 %, while positive control (diisopropyl-fluoro-phosphate) showed complete inhibition below 10 µM.

Most of these studies were performed in hens, as this is the species of choice for organophosphate induced neuropathy, or in cats, as this species seems to be exceptionally sensitive to triphenyl phosphate. The major fault of many of these studies is that there are no reports of the purity of the tested samples. As these studies were performed before about 1970 one has to assume that in many cases the samples were contaminated by other phosphoric acid esters due to the synthetic processes used in those years (Bayer AG, 2002c).
Only one study employed high purity triphenyl phosphate (zone refined, 99.99 %) (Wills et al., 1979) Two cats each were injected once subcutaneously with doses of 400, 700 mg/kg bw. One cat received 1000 mg/kg bw and 2 additional cats were employed as controls.

At 400 mg/kg bw one cat stayed without findings, while the other lost weight (31 %) before recovering within 3 months. No signs of unusual weakness or ataxia were seen.

At 700 mg/kg bw both animals became anorexic with watery diarrhea and prostration within several days. Histology of various organs revealed generalized vascular damage with perivascular edema in many tissues. The epithelial lining of the colon was lost. The livers showed fatty change and sinusoidal dilation. No changes were seen in the kidneys.

Sections from 11 levels of the nervous system from cortex to peripheral nerve were examined and did not provide any evidence of axon degeneration, demyelination or any other pathological change.

The cat given 1000 mg/kg bw became anorexic within one week, was unable to rise from the floor 3 weeks after treatment, when it was killed. It had lost 48 % of its original weight. Sections of nervous tissue did not show any evidence of neuronal damage.

In a 4 month study in rats Sobotka et al. determined the influence of dietary treatment with triphenyl phosphate at levels of 0, 0.25, 0.5, 0.75, and 1, corresponding to 161 to 711 mg/kg bw, on the nervous system of male rats (10 per group). In addition to standard clinical observations the neurotoxicity was assessed in open field, accelerating rotarod, forelimb grip strength and negative geotaxis examinations. These parameters were determined 4 times at the end of each month of treatment. Additionally body weights and food consumption were recorded weekly.

No adverse effects were noted in any of the neurotoxicity parameters. Body weights were dose dependently reduced at 0.5 and 1 % triphenyl phosphate (Sobotka et al., 1986).

Conclusion

Neurotoxicity is a potential adverse effect of many organophosphates. In available studies in hens and cats pure triphenyl phosphate does not induce immediate nor delayed neuropathy. Although the rat is a poor model for delayed neurotoxic effects, the absence of neurotoxicity after 4 months of treatment confirms the findings in other species. The findings of a decreased activity of choline esterase and paralysis predominantly in cats in older studies indicating a neurotoxic potential were not reproduced in later studies and may be due to contamination of the tested samples by other organophosphorus esters. At the high doses of triphenyl phosphate used even small concentrations of impurities might have sufficient activity.

3.1.11 Cytotoxicity

Saboori et al. (1991) and Mandel et al. (1989) reported that triphenyl phosphate efficiently inhibits the non-specific esterase activity of human monocytes in vitro. This effect was discovered incidentally during hematologic investigations in triphenyl phosphate-exposed workers and not associated with any detectable health effect. There was no effect of triphenyl phosphate on the number and function of monocytes in a group of 38 workers similarly exposed to triphenyl phosphate and investigated by Emmett et al. (1985). The acetyl choline esterase of erythrocytes was depressed only marginally in these workers.

Conclusion: Triphenyl phosphate inhibits the unspecific esterase of human monocytes.
3.2 Initial Assessment for Human Health

Triphenyl-phosphate is degraded by hydrolysis in rat liver homogenate to diphenyl-phosphate as the major metabolite. There is a low level of acute toxicity after oral and dermal administration. After acute oral administration in rats, mice, rabbits and guinea pigs the LD50 values are in a range above 3000 to above 20 000 mg/kg bw. This is far above the limit dose (2000 mg/kg bw.) applied in modern studies, which indicates a low level of toxicity after oral administration. Only 1 study in mice with limited documentation gave a value of 1320 mg/kg bw. Non-limit tests (i.e. those with doses above 2000 mg/kg bw) generally demonstrate low toxicity with LD50s greater than 5000 mg/kg bw. The toxicity of triphenyl phosphate after dermal application is very low with an LD50 of above 7900 mg/kg bw in rabbits. No valid studies are available regarding the acute inhalation of triphenyl phosphate. Triphenyl phosphate does not possess an irritation potential on the skin. The irritation potential of triphenyl phosphate on the mucous membrane of the eye is very low.

No animal data regarding skin sensitisation are available. There are few human case reports showing evidence of skin sensitisation. The incidence of skin sensitisation is very low.

Based on the available data, the toxicity after repeated treatment of rats or rabbits with triphenyl phosphate is low. The majority of the available studies did not report a wide variety of parameters, but taken together the studies using dietary doses of up to 711 mg/kg bw /day or dermal doses of up to 1000 mg/kg bw/day cover clinical observations, body weight gain, food consumption, haematology, clinical chemistry, organ weights as well as histopathology. After 5 weeks of treatment a slight depression of body weight gain and an increase of liver weights at a level of 0.5 % (estimated dose: ~ 350 mg/kg bw/day) were seen. A concentration of 0.1 % (estimated dose: ~ 70 mg/kg bw/day) in the diet was without any effect.

Limited studies with treatment for 4 month at dose levels of up to 1 % in the diet (~ 711 mg/kg bw) confirm this effect on growth. The general well being, immune and nervous systems were not affected. The NOAEL was 161 mg/kg bw due to reduced body weight gain with >= 345 mg/kg bw/day in one of the two studies. A subchronic study on developmental toxicity and fertility revealed a NOEL for male and female fertility and maternal toxicity of 1% in the diet (690 mg/kg bw/day). The low toxicity was confirmed also after dermal exposure of 100 or 1000 mg/kg bw/day in rabbits for 15 days without any sign of toxicity besides an unquantified depression of acetylcholinesterase as the only dose related effect.

Tests for gene mutations in bacterial as well as yeast and mammalian cells did not reveal any sign of mutagenicity. An UDS-test in syrian hamster fibroblast cells showed no mutagenic effect. There is no test concerning chromosomal aberration.

There are no findings indicating any adverse effects on fertility or the development of the fetus up to the highest tested dose of 690 mg/kg bw daily in the rat treated for 4 months during gametogenesis prior to mating and throughout mating and until day 20 of gestation.

There are no long term carcinogenicity bioassays available. The strain-A-mouse lung adenoma assay gave no indication of a carcinogenic potential

The treatment of rats for 4 month did not influence a range of parameters of immune function in rats receiving oral doses up to ~ 700 mg/kg bw/day (1 %). The NOEL for immuno-toxicity was 1 % of triphenyl phosphate (~ 700 mg/kg bw/day) in the diet and 0.75 % (~ 517 mg/kg bw/day) for all effects due to a slight reduction of body weight gain at the highest dose level. The significance of these results with respect to humans is not fully clear.
Neurotoxicity is a potential adverse effect of many organophosphates. In available studies in hens and cats pure triphenyl phosphate does not induce immediate nor delayed neuropathy. Although the rat is a poor model for delayed neurotoxic effects, the absence of neurotoxicity after 4 months of treatment confirms the findings in other species. The findings of a decreased activity of choline esterase and paralysis predominantly in cats in older studies indicating a neurotoxic potential were not reproduced in later studies and may be due to contamination of the tested samples by other organophosphorus esters. At the high doses of triphenyl phosphate used even small concentrations of impurities might have sufficient activity. Triphenyl phosphate inhibits the unspecific esterase of human monocytes.

4 HAZARDS TO THE ENVIRONMENT

4.1 Aquatic Effects

For the effects assessment on aquatic organisms the low water solubility of triphenyl phosphate (0.2 to 1.9 mg/l at room temperature, see chapt. 1), its adsorption potential, and its rapid abiotic and biotic decomposition in aqueous solution to various degradation products (see chapt. 2.1) have to be taken into account, particularly in tests with longer exposure periods.

Due to the instability, the aquatic effects data cover not only the toxicity of triphenyl phosphate but also the toxicity of the degradation products.

Out of the multitude of acute tests performed with triphenyl phosphate and fish, daphnia, and algae, only those tests were chosen for the aquatic hazard assessment that were performed to today's standard testing guidelines or showed sufficient reliable results for organism groups other than fish, daphnia, and algae.

A test on the acute toxicity of triphenyl phosphate to fish was conducted according to OECD guideline 203. Static exposure of Oncorhynchus mykiss for 96 hours resulted in a LC$_{50}$ value of 0.85 mg/l (nominal concentration) (Ciba-Geigy, 1981b).

Several acute fish tests were performed according to the U.S. guideline EPA-660/3-75-009. (Mayer et al., 1981) reports static test results with 96 h-LC$_{50}$ values of 0.4 mg/l for Oncorhynchus mykiss and $>0.32<0.56$ mg/l for the marine species Cyprinodon variegatus (both nominal concentrations).

In a long-term flow through tests with sac fry stage of Oncorhynchus mykiss a 90 d-NOEC \geq 0.0014 mg/l based on measured triphenyl phosphate concentrations was determined for the endpoints eye cataract, vertebral collagen amount, survival, and growth (Mayer et al., 1981). In another test with analytic control, a 30 d-LOEC of 0.055 mg/l was determined for the development of sac fry stage of Oncorhynchus mykiss regarding the endpoints length and weight (Sitthichaikasem, 1978). From the test raw data an EC$_{10}$ of 0.037 mg/l was calculated, equipollent to the NOEC (EU TGD, 1996).

In a 30 day flow-through test with Pimephales promelas the highest applied triphenyl phosphate concentration of 0.23 mg/l (measured conc.) reduced the survival of fry significantly. However no effects on egg hatchability, eyes, or growth were noted with triphenyl phosphate concentrations up to the highest concentration tested of 0.23 mg/l. For survival the authors report a NOEC of 0.087 mg/l and a LOEC of 0.23 mg/l (Mayer et al., 1981).

A test on the acute toxicity of triphenyl phosphate to Daphnia magna was conducted according to the US guideline EPA-660/3-75-009. Static exposure for 96 hours resulted in a LC$_{50}$ value of 1.0 mg/l (nominal concentration) (Mayer et al., 1981).
Lower effective concentrations were found for another crustacean, *Mysidopsis bahia*, in a test on the acute toxicity as well conducted according to US guideline EPA-660/3-75-009. Static exposure for 96 hours resulted in a LC₅₀ value of > 0.18 < 0.32 mg/l (nominal concentration) (Mayer et al., 1981).

No long-term study on *Daphnia magna* or other aquatic invertebrates is available.

The toxicity of triphenyl phosphate was investigated to algae with different growth media (Bolds basal medium = BBM, OECD and US-EPA media). In a test according to OECD guideline 201 (modified) *Selenastrum capricornutum* as well as *Scenedesmus subspicatus* showed 72 h-LOEC values on growth of 0.5 mg/l with BBM, 1.0 mg/l with OECD medium, and 5.0 mg/l with EPA medium. *Chlorella vulgaris* did no show any effect at 5.0 mg/l growing on any of the media. All values are based on nominal concentrations. Since the focal point of this test was the difference in influence of growth media on algae growth, no EC₀ values are reported (Millington et al., 1988). Due to the only slight effect (< 20 %) shown in the figures, NOECs are derived for this test, applying a factor of 2 on the LOEC (EU TGD 1996). Thus the 72 h-NOEC for *Chlorella vulgaris* is determined with 2.5 mg/l, and for *Selenastrum capricornutum* as well as *Scenedesmus subspicatus* with 0.25 to 2.5 mg/l, depending on the growth medium used.

Derivation of the PNECaqua

The lowest available long-term value, the NOEC of 0.037 mg/l, found in a test with *Oncorhynchus mykiss* is used for the derivation of PNECₐqua. Since valid long-term tests with species from two trophic levels (fish and algae) are available, an assessment factor of 50 is applied, resulting in a PNECₐqua of 0.74 µg/l.

Toxicity to Microorganisms

For the toxicity of triphenyl phosphate on microorganisms 24 h-EC₀ values of 200 mg/l (each) were reported for *Escherichia coli* and *Pseudomonas fluorescens* (Bayer AG, 1978; test protocols are no longer available). Since the biodegradability of triphenyl phosphate showed a result of 83 - 94 % after 28 d of incubation with 30 mg/l sludge and 100 mg/l triphenyl phosphate in a test on ready biodegradability, there is no significant effect of triphenyl phosphate in the low concentration range expected.

4.2 Terrestrial Effects

No data available.

4.3 Other Environmental Effects

No valid data available.

4.4 Initial Assessment for the Environment

Triphenyl phosphate has a solubility in water between 0.2 mg/l (river water) and 1.9 mg/l (distilled water) at 20 °C, a vapour pressure of 0.000835 Pa at 25 °C and a log Kₐw of 4.6. According to a Mackay Level I model calculation, triphenyl phosphate is mainly distributed to soil (43.9 %) and sediment (41.0 %), and to a lesser extent to water (14.3 %) and air (0.7 %). Triphenyl phosphate is hardly volatile from aqueous solution (calculated Henry constant: 0.018 - 0.036 Pa m³/mol). The substance is strongly absorbed to soil and sediment (measured Kₐc-values in the range of 2514 - 3561). In the atmosphere rapid degradation of triphenyl phosphate via indirect photolysis occurs (t₁/₂air = ca. 12 h). While triphenyl phosphate is relatively stable under neutral and acidic conditions
Triphenyl phosphate (t½ = 19 d at pH 7; t½ > 28 d at pH 5), it undergoes hydrolysis under alkaline conditions (t½ = 7.5 d at pH 8.2; t½ = 1.3 d at pH 9.5). In soil half-lives for primary degradation of 37 and 21 days were determined under aerobic and anaerobic test conditions, respectively. Triphenyl phosphate is readily biodegradable (83 - 94 % degradation after 28 d). Under anaerobic conditions with river sediment ca. 90 % triphenyl phosphate were primary degraded after 40 days of incubation. Mineralisation was about 22 % after 40 days. Measured bioconcentration factors in fish were in the range of 110 to 144, indicating a moderate bioaccumulation potential. As the BCF values were related to the parent compound, there is no information on possible accumulation of stable metabolites. BCFs for *Lemna minor* and *Typha sp.* are stated to be < 50. As the substance was found in dolphins collected in the Gulf of Mexico, accumulation via the food chain may occur.

The acute toxicity has been determined for fish (*Oncorhynchus mykiss*: 96 h-LC₅₀ > 0.4 mg/l) and invertebrates (*Mysidopsis bahia*: 96 h-EC₅₀ > 0.18 - 0.32 mg/l, *Daphnia magna*: 48 h-EC₅₀ = 1.0 mg/l). In tests with algae (*Selenastrum capricornutum, Scenedesmus subspicatus, Chlorella vulgaris*) NOEC values in the range of 0.25 to 2.5 mg/l were obtained after exposure periods of 96 h. In a long term test with fish (*Oncorhynchus mykiss*) a 30 d-NOEC of 0.037 mg/l was found. A PNECₐqua of 0.74 µg/l is derived from the aforementioned long-term NOEC using an assessment factor of 50.

5 RECOMMENDATIONS

Environment:

The chemical is a candidate for further work. Triphenyl phosphate has a wide dispersive use as flame retardant. Environmental releases are likely to occur during production, during the use as flame retardant e.g. in polymer applications as well as during the service life and the disposal of products containing the substance. Also accidental spill and leakage of hydraulic liquids in different application areas can be a source of environmental release. However, no exposure information is available, except for the production at the sponsor company. Triphenyl phosphate is highly toxic to aquatic organisms (LC₅₀ < 1 mg/l for fish, PNECₐqua = 0.74 µg/l) and has a potential to accumulate in biota. Therefore, an exposure assessment and, if then indicated, an environmental risk assessment is recommended. Environmental exposure during production at the sponsor company is adequately controlled.

Human Health:

The chemical is currently of low priority for further work because of its low hazard potential.
REFERENCES

Bayer AG (1978). Internal Study on Toxicity of Triphenyl phosphate to E. coli, original study not available.

CITI (1992). Biodegradation and Bioaccumulation Data of Existing Chemicals Based on the CSCL Japan, Compiled under the Supervision of Chemical Products Safety Division, Basic Industries Bureau MITI, Ed. by Japan Chemical Industry Ecology-Toxicology & Information Center (CITI).

OECD SIDS

TRIPHENYL PHOSPHATE

IUCLID

Data Set

Existing Chemical
ID: 115-86-6
CAS No.: 115-86-6
EINECS Name: triphenyl phosphate
EC No.: 204-112-2
TSCA Name: Phosphoric acid, triphenyl ester
Molecular Formula: C_18H_{15}O_4P

Producer related part
Company: Bayer AG
Creation date: 15.01.2001

Substance related part
Company: Bayer AG
Creation date: 15.01.2001

Status:
Memo: AKTUELL / ICCA (Bayer Datensatz aus 1992 und ECB-Datensatz gemerkt)

Printing date: 05.09.2005
Revision date:
Date of last update: 05.09.2005

Number of pages: 124

Chapter (profile): Chapter: 1, 2, 3, 4, 5, 6, 7, 8, 10
Reliability (profile): Reliability: without reliability, 1, 2, 3, 4
1.0.1 APPLICANT AND COMPANY INFORMATION

1.0.2 LOCATION OF PRODUCTION SITE, IMPORTER OR FORMULATOR

1.0.3 IDENTITY OF RECIPIENTS

1.0.4 DETAILS ON CATEGORY/TEMPLATE

1.1.0 SUBSTANCE IDENTIFICATION

IUPAC Name :
Smiles Code : O=P(Oc(cccc1)c1)(Oc(cccc2)c2)Oc(cccc3)c3
Molecular formula : C18H15O4P
Molecular weight : 326.29
Petrol class :
Flag : Critical study for SIDS endpoint 10.11.2004

1.1.1 GENERAL SUBSTANCE INFORMATION

Purity type :
Substance type : organic
Physical status : solid
Purity : >= 99.6 % w/w
Colour :
Odour :
Flag : Critical study for SIDS endpoint 07.05.2002

1.1.2 SPECTRA

1.2 SYNONYMS AND TRADENAMES

TPP
Flag : Critical study for SIDS endpoint 10.11.2004

Phosphoric acid, triphenyl ester
10.11.2004

1.3 IMPURITIES
1. GENERAL INFORMATION

ID: 115-86-6
DATE: 20.08.2002

Remark: <= 0.4 % water, phenol, other esters
Flag: Critical study for SIDS endpoint
07.05.2002

1.4 ADDITIVES

1.5 TOTAL QUANTITY

1.6.1 LABELLING

Labelling: provisionally by manufacturer/importer
Specific limits:
Symbols: N, ,
Nota: , ,
R-Phrases: (50/53) Very toxic to aquatic organisms, may cause long-term adverse effects in the aquatic environment
S-Phrases: (61) Avoid release to the environment. Refer to special instructions/Safety data sets
Flag: Critical study for SIDS endpoint
18.03.2002

1.6.2 CLASSIFICATION

Classified: provisionally by manufacturer/importer
Class of danger:
R-Phrases: (50/53) Very toxic to aquatic organisms, may cause long-term adverse effects in the aquatic environment
Specific limits:
Flag: Critical study for SIDS endpoint
07.05.2002

1.6.3 PACKAGING

1.7 USE PATTERN

Type of use: industrial
Category: Polymers industry
Flag: Critical study for SIDS endpoint
07.05.2002

Type of use: type
Category: Use resulting in inclusion into or onto matrix
Flag: Critical study for SIDS endpoint
03.05.2002
1. GENERAL INFORMATION

Type of use: use
Category: Flame retardants and fire preventing agents
Flag: Critical study for SIDS endpoint

Type of use: use
Category: other: Plasticisers
Flag: Critical study for SIDS endpoint

1.7.1 DETAILED USE PATTERN

1.7.2 METHODS OF MANUFACTURE

1.8 REGULATORY MEASURES

1.8.1 OCCUPATIONAL EXPOSURE LIMIT VALUES

Type of limit: other: TRGS 900 (DE)
Limit value: 3 mg/m³
Flag: Critical study for SIDS endpoint

Type of limit: TLV (US)
Limit value: 3 mg/m³
Short term exposure limit value
Limit value: 9 mg/m³
Time schedule: 3 times
Remark: length of exposure: no more than a total of 30 min during a workday
Flag: Critical study for SIDS endpoint

Type of limit: OES (UK)
Limit value: 3 mg/m³
Short term exposure limit value
Limit value: 6 mg/m³
Time schedule: 10 minute(s)
Frequency: 1 times
Flag: Critical study for SIDS endpoint

1.8.2 ACCEPTABLE RESIDUES LEVELS

(2)
1.8.3 WATER POLLUTION

Classified by : KBwS (DE)
Labelled by :
Class of danger : 2 (water polluting)

Remark : WGK-Identification-Nr. 1232
Flag : Critical study for SIDS endpoint
07.05.2002

1.8.4 MAJOR ACCIDENT HAZARDS

Legislation :
Substance listed : no
No. in Seveso directive :

Flag : Critical study for SIDS endpoint
07.05.2002

1.8.5 AIR POLLUTION

Classified by : other: No classification
Labelled by :
Number :
Class of danger :

Flag : Critical study for SIDS endpoint
07.05.2002

1.8.6 LISTINGS E.G. CHEMICAL INVENTORIES

1.9.1 DEGRADATION/TRANSFORMATION PRODUCTS

Type : degradation product
CAS-No : 108-95-2
EC-No : 203-632-7
EINECS-Name : phenol
IUCLID Chapter :

Remark : IUCLID Chapter 3.1.2 and 3.1.3
Reliability : (2) valid with restrictions
Flag : Critical study for SIDS endpoint
14.12.2004

Type : degradation product
CAS-No : 838-85-7
EC-No : 212-657-2
EINECS-Name : diphenyl hydrogen phosphate
IUCLID Chapter :

Remark : IUCLID Chapter 3.1.2 and 3.1.3
Flag : Critical study for SIDS endpoint
14.12.2004
1. GENERAL INFORMATION

Type : degradation product
CAS-No : 124-38-9
EC-No : 204-696-9
EINECS-Name : carbon dioxide
IUCLID Chapter :

Remark : IUCLID Chapter 3.1.3 and 3.5
Flag : Critical study for SIDS endpoint
14.12.2004 (3) (5)

1.9.2 COMPONENTS

1.10 SOURCE OF EXPOSURE

Remark : TPP is manufactured from phosphous oxychloride and phenol. TPP is used as a plasticer for polymers and its use results in inclusion into the polymer matrix. Exposure of the general population to TPP through normal use can be regarded as minimal.
Flag : Critical study for SIDS endpoint
10.11.2004 (6)

1.11 ADDITIONAL REMARKS

1.12 LAST LITERATURE SEARCH

Type of search : Internal and External
Chapters covered :
Date of search :

Remark : Environmental aspects and ecotoxicology: May 2002
Toxicology: December 2000
CAS number search in external and internal databases, e.g. HSDB, Aquire, Biosis, Embase, Toxline, Scisearch.
Flag : Critical study for SIDS endpoint
01.08.2002

1.13 REVIEWS
2.1 MELTING POINT

Value : 49 - 50 °C

Remark : Method in handbook not reported
Reliability : (2) valid with restrictions
Flag 14.12.2004 : Critical study for SIDS endpoint

Value : 50.5 °C

Remark : Method in handbook not reported
Reliability : (2) valid with restrictions
Flag 14.12.2004 : Critical study for SIDS endpoint

Value : 48 - 50 °C

Remark : Method in safety data sheet not reported
Reliability : (4) not assignable
Flag 14.12.2004 : Manufacturer data without proof

Value : 50 °C

Remark : Method in handbook not reported
Reliability : (4) not assignable
Flag 14.12.2004 : Data from non-peer-reviewed handbook or collection of data

2.2 BOILING POINT

Value : 245 °C at 14.6 hPa

Decomposition : other: no data
Method : other: no data
Year :
GLP :
Test substance :
Reliability : (2) valid with restrictions
Flag 14.12.2004 : Critical study for SIDS endpoint

Value : 220 °C at 6.6 hPa

Decomposition :
Method :
Year : GLP :
Test substance :
Remark : Method not reported
Reliability : (2) valid with restrictions
Flag 14.12.2004 : Data from handbook or collection of data
<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Value</td>
<td>220 °C at 5 hPa</td>
</tr>
<tr>
<td>Remark</td>
<td>Method in safety data sheet not reported</td>
</tr>
<tr>
<td>Reliability</td>
<td>(4) not assignable</td>
</tr>
<tr>
<td></td>
<td>Manufacturer data without proof</td>
</tr>
<tr>
<td>14.12.2004</td>
<td></td>
</tr>
<tr>
<td>Value</td>
<td>245 °C at 14.6</td>
</tr>
<tr>
<td>Decomposition</td>
<td></td>
</tr>
<tr>
<td>Method</td>
<td>other: no data</td>
</tr>
<tr>
<td>Year</td>
<td>1996</td>
</tr>
<tr>
<td>GLP</td>
<td></td>
</tr>
<tr>
<td>Test substance</td>
<td></td>
</tr>
<tr>
<td>Reliability</td>
<td>(4) not assignable</td>
</tr>
<tr>
<td></td>
<td>Data from non-peer-reviewed handbook or collection of data</td>
</tr>
<tr>
<td>14.12.2004</td>
<td></td>
</tr>
</tbody>
</table>

2.3 DENSITY

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>relative density</td>
</tr>
<tr>
<td>Value</td>
<td>= 1.2055 g/cm³ at 50 °C</td>
</tr>
<tr>
<td>Remark</td>
<td>It is assumed that the density is reported at 50 °C since the substance is melted at that temperature. The melt is the form which is often used for transport</td>
</tr>
<tr>
<td>Reliability</td>
<td>(2) valid with restrictions</td>
</tr>
<tr>
<td></td>
<td>Data from peer-reviewed handbook or collection of data</td>
</tr>
<tr>
<td>Flag</td>
<td>Critical study for SIDS endpoint</td>
</tr>
<tr>
<td>14.12.2004</td>
<td></td>
</tr>
<tr>
<td>Type</td>
<td>relative density</td>
</tr>
<tr>
<td>Value</td>
<td>1.205 g/cm³ at 50 °C</td>
</tr>
<tr>
<td>Remark</td>
<td>Determination according to DIN 51757</td>
</tr>
<tr>
<td>Reliability</td>
<td>(4) not assignable</td>
</tr>
<tr>
<td></td>
<td>Manufacturer data without proof</td>
</tr>
<tr>
<td>Flag</td>
<td>Critical study for SIDS endpoint</td>
</tr>
<tr>
<td>14.12.2004</td>
<td></td>
</tr>
</tbody>
</table>

2.3.1 GRANULOMETRY

2.4 VAPOUR PRESSURE

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Value</td>
<td>= .00000835 hPa at 25 °C</td>
</tr>
<tr>
<td>Decomposition</td>
<td></td>
</tr>
<tr>
<td>Method</td>
<td>other (calculated)</td>
</tr>
<tr>
<td>Year</td>
<td>1957</td>
</tr>
<tr>
<td>GLP</td>
<td></td>
</tr>
<tr>
<td>Test substance</td>
<td></td>
</tr>
<tr>
<td>Remark</td>
<td>extrapolated from measured data by the Clausius-Clapeyron equation</td>
</tr>
<tr>
<td>Reliability</td>
<td>(2) valid with restrictions</td>
</tr>
<tr>
<td></td>
<td>Accepted calculation method</td>
</tr>
<tr>
<td>Flag</td>
<td>Critical study for SIDS endpoint</td>
</tr>
<tr>
<td>14.12.2004</td>
<td></td>
</tr>
</tbody>
</table>

Year: 1985
GLP: Test substance:

Remark: Vapour pressure at 25 °C extrapolated from measured boiling points, which had been measured by different authors.

Result: Boiling point [°C] Vapour pressure extrapol. to 25 °C [hPa]
220 at 6.7 hPa 2.0 x 10E-6
238 at 13.3 hPa 1.6 x 10E-6
245 at 14.7 hPa 1.1 x 10E-6

Reliability: (2) valid with restrictions
Accepted calculation method

14.12.2004 (12)

Value: .000048 hPa at 50 °C
Decomposition: other (calculated)
Method: other (calculated)
Year: 1947
GLP: Test substance:

Remark: Method in safety data sheet not reported
Reliability: (2) valid with restrictions
Basic data given

14.12.2004 (13)

Value: < .01 hPa at 20 °C

Remark: Method in handbook not reported
Reliability: (4) not assignable
Data from non-peer-reviewed handbook or collection of data

14.12.2004 (9)

Value: .00001 hPa at 54 °C

Remark: Method in handbook not reported. Reported value at 30°C has higher limit than value reported for 54 °C in the same handbook
Reliability: (4) not assignable
Data from non-peer-reviewed handbook or collection of data

14.12.2004 (10)

2.5 PARTITION COEFFICIENT

Partition coefficient: octanol-water
Log pow: = 4.6 at °C
pH value:
Method: other (measured)
Year: 1979
GLP: no
Test substance:

Remark: experimentally determined by partitioning between water and 1-octanol in a closed bottle at room temperature.

Test condition: Measured by preparing at least 2 concentrations (100 ppm - 1%) TPP in 100 ml 1-octanol. This was added to 500 ml water and shaken for 48 hours. Mixture was allowed to stand for 1 week in dark. Aliquots were drained and extracted with methylene chloride and analyzed.

Reliability: (2) valid with restrictions
Flag: Critical study for SIDS endpoint

Partition coefficient: octanol-water
Log pow: = 4.76 at °C
pH value:

Method: other (measured)
Year: 1981
GLP:
Test substance:

Test condition: 50 mg added to separatory funnel containing 50 ml octanol (saturated with water) and 50 ml distilled water. The funnel was shaken for 2 h. Aliquots of the aqueous phase were extracted three times with hexane and analysed by GC. Quantity in organic phase was calculated from the triphenyl phosphate in water.

Reliability: (2) valid with restrictions
Basic data given

Partition coefficient: octanol-water
Log pow: = 4.59 at °C
pH value:

Remark: experimentally determined, method not reported
Reliability: (2) valid with restrictions
Data from peer-reviewed handbook or collection of data

Partition coefficient: octanol-water
Log pow: 4.7 at °C
pH value:

Year: 2002
GLP:
Test substance:

Reliability: (4) not assignable
Manufacturer data without proof

Partition coefficient: octanol-water
Log pow: = 4.59 at °C
pH value:

Reliability: (4) not assignable
Data from non-peer-reviewed handbook or collection of data
2. PHYSICO-CHEMICAL DATA

14.12.2004

Partition coefficient: octanol-water
Log pow: 4.62 at °C
pH value: other (measured)
Method: other (measured)
Year: 1981
GLP: no
Test substance:

Remark:
The authors of the study report that they determined Kow experimentally with the method of Saeger VW, Hicks O, Kaley RG, Michael PR, Mieure JP, Tucker ES (1979) Environmental Fate of Selected Phosphate Esters. Environ Sci Technol 13: 840 - 844. Both groups obtained exactly the same value.

Reliability:
(2) valid with restrictions
Basic data given
14.12.2004

2.6.1 SOLUBILITY IN DIFFERENT MEDIA

Solubility in:
Water
Value: at °C
pH value:
concentration: at °C
Temperature effects:
Examine different pol.:
pKa: at 25 °C
Description:
Stable:
Deg. product:
Method:
other: Shaking excess amounts of TPP with water for 2 h at room temp., filtering off undissolved TPP with 2 µm filter, methylation and analysis with GC/flame photometric detector
Year: 1979
GLP:
Test substance:

Result:
at room temperature (21 °C)
1. Test: Buffered distilled water, pH 4.5 - 9.5
 solubility: 1.4 - 1.6 mg/l
2. Test: Lake/River water, pH 7.8 - 8.2
 solubility: 0.2 - 0.3 mg/l
Reliability:
(2) valid with restrictions
Basic data given
Flag:
Critical study for SIDS endpoint
14.12.2004

Solubility in:
Water
Value: = 1.9 mg/l at 20 °C
pH value:
concentration: at °C
Temperature effects:
Examine different pol.:
pKa: at 25 °C
Description:
Stable:
Deg. product:
Method: other: Agitating excess TPP in purified water (Milli-Q water purif. system) for 48 h, standing for 1 week to permit phase separation in the dark, centrifugation and extraction of water phase with dichloromethane.

Analysis with GC/FID

Year: 1979
GLP: no
Test substance:

Test condition: Room temperature (in SIAR assumed to be 20 °C)
Reliability: (2) valid with restrictions
Basic data given
Flag: Critical study for SIDS endpoint

Solubility in: Water
Value: 1.9 mg/l at 25 °C
pH value:
concentration: at °C
Temperature effects:
Examine different pol.
pKa: at 25 °C
Description:
Stable:
Deg. product:
Method: other: see test condition
Year: 1981
GLP:
Test substance:

Test condition: 25 ml ester was added to 500 ml water, agitated for 48 h and left standing in dark for 1 week. Aqueous phase was centrifuged and extracted twice for 1 h. Extracts were analyzed.

pH of water was not reported. Performed at room temperature.

Reliability: (2) valid with restrictions
Basic data given
Flag: Critical study for SIDS endpoint

Solubility in: Water
Value: < .1 - .6 mg/l at 15 °C
pH value:
concentration: at °C
Temperature effects:
Examine different pol.
pKa: at 25 °C
Description:
Stable:
Deg. product:
Method:
Year: 1988
GLP: no
Test substance: other TS: technical grade TPP (Ciba-Geigy DVP 438)

Method: Measurements of solubility of TPP in seawater (pH 8.1)
Result: During incubation for acute toxicity tests of TPP on Brown Shrimp (Crangon crangon), the substance was added to seawater under constant stirring. Still after several days and at concentrations as low as 0.25 mg/l precipitates were observed.
The following analytical TPP-concentrations were determined after adding 2.5 mg/l of the substance to seawater:
<table>
<thead>
<tr>
<th>Time (h):</th>
<th>6</th>
<th>24</th>
<th>30</th>
<th>48</th>
<th>54</th>
<th>72</th>
<th>78</th>
<th>96</th>
</tr>
</thead>
<tbody>
<tr>
<td>mg/l:</td>
<td>0.14</td>
<td>0.44</td>
<td><0.1</td>
<td><0.1</td>
<td><0.1</td>
<td>0.16</td>
<td><0.1</td>
<td></td>
</tr>
</tbody>
</table>

These results demonstrate that TPP is dissolved very slowly. After 4 d the limit of solubility (approx. 2 mg/l) is not reached. From the data it seems doubtful that the limit of solubility ever will be reached since degradation may start to play an important role in natural water.

Test condition: Solubility in seawater tested since use of seawater was essential for performance of acute toxicity test with Brown Shrimp (Crangon crangon).

Reliability: (2) valid with restrictions

Flag: Critical study for SIDS endpoint

Solubility in: Water

Value: .75 mg/l at 25 °C

pH value :

Temperature effects :

Examine different pol. :

pKa :

Description :

Stable :

Deg. product :

Method :

Year :

GLP :

Test substance :

Remark :

Reliability :

Flag: Critical study for SIDS endpoint

14.12.2004

2.6.2 SURFACE TENSION

Value :

Type :

Method :

other: DIN 51376

Year :

GLP :

Test substance :

Reliability :

14.12.2004

2.7 FLASH POINT

Value :

> 230 °C

Type :

Method :

other: DIN 51376

Year :

GLP :

Test substance :

Reliability :

14.12.2004

2.8 AUTO FLAMMABILITY

Value :

> 500 °C at

Type :

Method :

other: DIN 51794

Year :

GLP :

Test substance :
OECD SIDS
TRIPHENYL PHOSPHATE
2. PHYSICO-CHEMICAL DATA
ID: 115-86-6
DATE: 20.08.2002

| Reliability | : (4) not assignable
| 14.12.2004 | Manufacturer data without proof

2.9 FLAMMABILITY

2.10 EXPLOSIVE PROPERTIES

2.11 OXIDIZING PROPERTIES

2.12 DISSOCIATION CONSTANT

2.13 VISCOSITY

2.14 ADDITIONAL REMARKS
3.1.1 PHOTODEGRADATION

Type: air
Light source:
Light spectrum: nm
Relative intensity: based on intensity of sunlight

INDIRECT PHOTOLYSIS

Sensitizer: OH
Conc. of sensitizer: 1500000 molecule/cm³
Rate constant: .0000000000108423 cm³/(molecule*sec)
Degradation: 50 % after 11.8 hour(s)
Deg. product:
Method: other (calculated): AOPWIN, v.1.90
Year: 2001
GLP:
Test substance:

Remark: the calculated t1/2 is based on the assumption of 12h light-cycle/d and a concentration of 1.5x10E6 OH/cm³
Reliability: (2) valid with restrictions
Flag: Critical study for SIDS endpoint

Type: water
Light source: other: low-pressure mercury lamp
Light spectrum: 254 nm
Relative intensity: based on intensity of sunlight
Conc. of substance: .1 mg/l at °C
Deg. product:
Method:
Year: 1991
GLP: no data
Test substance: other TS: commercial TPP purified by zone refining; purity checked by GC.

Method: Photolysis in static reactor:
Irradiation of a TPP-solution in distilled water with a mercury lamp, analysis of samples by GC (packed column) - FID. Phosphoric acid was analyzed by the Ascorbic Acid Method (APHA et al., 1975), phenols by the 4-Aminoantipyrine Method (Environmental Health Bureau 1978).

Result: Disappearance of 0.1 mg/l TPP at pH3 and pH10 resp. caused by irradiation was shown within minutes.

TPP degradation without pH adjustment at pH 3.4 after 6 h irradiation:
100 % TPP degraded, 60 % of theoretical phosphate found, no phenol found.

TPP degradation with initial pH 12 after 6 h irradiation:
100 % TPP degraded, 60 % of theoretical phosphate found, 9 % of theoretical phenol found. The produced phenol was further decomposed by irradiation.
Degradation products di- and monophenyl phosphate were not determined in neither of the tests.

Degradation at alkaline pH may involve the hydrolysis with NaOH.

Test condition: Solution of TPP in 100 ml distilled water for 1 h by ultrasonication, dilution with 1.9 l distilled water; withdrawal of samples during irradiation.

Irradiation with the following confirmed wavelength:
254 nm (6.640-6.800 mW/cm²), 297 nm (0.140-0.143 mW/cm²), 365 nm (0.153-0.158 mW/cm²).
Reliability : (2) valid with restrictions
Acceptable, well-documented publication which meets basic scientific principles
Flag : Critical study for SIDS endpoint
24.07.2002
Type : other: methanol
Light source : other: mercury lamp
Light spectrum : 267.5 nm
Relative intensity : based on intensity of sunlight
Deg. product :
Method :
Year : 1985
GLP :
Test substance :

Remark : 0.1 mg/l triphenyl phosphate in methanol was exposed to UV light to examine the degradation of TPP. With a low pressure mercury lamp 100 % were degraded after 1 hour, with a high pressure mercury lamp 100 % were degraded after 20 minutes. Reference in Japanese, cited according to English translation

Reliability : (2) valid with restrictions
Basic data given: comparable to guideline
14.12.2004
Type : water
Light source : other: low-pressure mercury lamp
Light spectrum : 254 nm
Relative intensity : based on intensity of sunlight
DIRECT PHOTOLYSIS
Halflife t1/2 :
Degradation :
Quantum yield : .29
Deg. product :
Method : other (calculated)
Year : 1994
GLP : no data
Test substance : other TS: > 97%
Remark : Measured quantum yield 0.29 according to the authors at 254 nm with a mercury lamp for triphenyl phosphate. The quantum yield was calculated from the rate of light absorption and the rate of disappearance of the substance; control samples stored in the dark (< 10 h) showed no concentration change; analysis was conducted via LC/UV
Test condition : mery-go-round sample rack; concentration of TS: 1.5-3 mg/l; irradiation was performed until > 75% of TS was degraded; fenitrothion as reference compound
Reliability : (2) valid with restrictions
Basic data given, study meets generally accepted scientific principles
24.07.2002
Type : water
Light source :
Light spectrum : nm
Relative intensity : based on intensity of sunlight
Result : Test of UV light absorption of TPP in aqueous solution with a low pressure mercury lamp at 254 nm: E = 644 (logE = 2.81).
No absorption at 313 nm.
3. ENVIRONMENTAL FATE AND PATHWAYS

ID: 115-86-6

DATE: 20.08.2002

<table>
<thead>
<tr>
<th>Reliability</th>
<th>(2) valid with restrictions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flag</td>
<td>Critical study for SIDS endpoint</td>
</tr>
<tr>
<td>24.07.2002</td>
<td></td>
</tr>
</tbody>
</table>

Type: other: methanol

Light source:

Light spectrum: nm

Relative intensity: based on intensity of sunlight

Result:

Test of UV light absorption of TPP in methanol with a low pressure mercury lamp at 254 nm: 714 (logE = 2.85).

No absorption at 313 nm.

Reliability: (2) valid with restrictions

No guideline study, but sound and well documented study

24.07.2002

Result:

Test of TPP in ethanol

Wavelength of maximum absorption:

261 nm: $E = 957$ (logE = 2.981)

24.07.2002

Result:

Test of TPP in hexane

Wavelengths of maximum absorption:

256 nm: $E = 960$

262 nm: $E = 1180$

268 nm: $E = 910$

24.07.2002

3.1.2 STABILITY IN WATER

Type: abiotic

t1/2 pH4: at °C

t1/2 pH7: = 19 day(s) at 25 °C

t1/2 pH9: = 3 day(s) at 25 °C

t1/2 pH 5: > 28 day(s) at 25 °C

Deg. product:

Method: other

Year: 1981

GLP: no data

Test substance: no data

Remark: Hydrolysis products not measured.

Test condition:

Initial triphenyl phosphate concentration: 50 µg/l, solubilizing agent: methanol

Test with pH 5: 0.05 M buffered solution with potassium acid phthalate/sodium hydroxide

Test with pH 7: 0.05 M buffered solution with potassium and disodium orthophosphate

Test with pH 9: 0.05 M buffered solution with boric acid/sodium hydroxide

Reliability: (2) valid with restrictions

Study in accordance with generally accepted scientific principles and described in sufficient detail

Flag

14.12.2004

Type: abiotic
3. ENVIRONMENTAL FATE AND PATHWAYS

ID: 115-86-6
DATE: 20.08.2002

Test substance: other TS: Aldrich Chemical Co., purity not reported

Deg. products:
- 108-95-2 203-632-7 phenol
- 838-85-7 212-657-2 diphenyl hydrogen phosphate

Method: Analyses were performed by GC/flame photometric detector after extraction with diethylether and derivatisation of free OH groups with diazomethane. Recovery of TPP was 90-100 %.

Remark: In all cases the authors used TPP saturated solutions, obtained by excess amounts of TPP shaken in water for 2 hours and than filtered (11 micron filter).

Result: Triphenyl phosphate showed different behaviour in distilled water and natural waters refering to solubility (see chapt. 2.6.1) as well as to hydrolysis.

Hydrolysis of TPP was found to be much faster under alkaline conditions than in neutral or acid solution:

Distilled water:
with adjusted pH values at 21 °C:
- pH 4.5 (1): t1/2 = too slow for reliable measurement
- pH 6.7 (2): t1/2 = too slow for reliable measurement
- pH 8.2 (3): t1/2 = 7.5 days
- pH 9.5 (4): t1/2 = 1.3 days

pH adjustment at the test with dist. water by:
(1) HCl
(2) dist. water
(3) sodium/disodium phosphate buffer
(4) boric acid/sodium hydroxide

River and lake water:
with natural buffer, without pH control at 21 °C:
- pH 7.8 to pH 8.2: very little degradation for the first two days, thereafter rapid loss at a rate that is faster than in distilled water at comparable pH.

Reported hydrolysis products were diphenyl phosphate and phenol (the later is mentioned in the analytical procedure only). Further hydrolysis of diphenyl phosphate was considered much slower as monophenyl phosphate was not found in these experiments, and diphenyl phosphate was considered stable under alkaline conditions with reference to an older paper.

Reliability: (2) valid with restrictions
study well documented, meets generally accepted scientific principles

Flag: Critical study for SIDS endpoint

14.12.2004 (4)

Type: biotic

t1/2 pH4: at °C
t1/2 pH7: at °C
t1/2 pH9: at °C
GLP: no data
Test substance: other TS: purity 98%

Method: Outdoor experimental stream including two pools and 50 m total length at National Fisheries Contaminant Research Center. Addition of soil once a week with increasing TPP amounts over the time. Test on TPP content in stream sediment and in the water outflow.

Result: Monitoring of TPP concentrations: in soil (before added), sediment x days after addition of treated soil, water (at outflow):

TPP concentrations in soil before added to stream:

<table>
<thead>
<tr>
<th>Week</th>
<th>Soil (mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>55.2</td>
</tr>
<tr>
<td>2</td>
<td>92.4</td>
</tr>
<tr>
<td>3</td>
<td>233.8</td>
</tr>
<tr>
<td>4</td>
<td>451.8</td>
</tr>
<tr>
<td>5</td>
<td>841.9</td>
</tr>
<tr>
<td>6</td>
<td>2099.1</td>
</tr>
</tbody>
</table>

TPP concentrations measured in sediment:

<table>
<thead>
<tr>
<th>Week</th>
<th>Sediment (mg TTP/kg sediment)</th>
<th>t(1/2) TPP</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>2</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>3</td>
<td>33.1</td>
<td>0.5</td>
</tr>
<tr>
<td>4</td>
<td>128.3</td>
<td>11.0</td>
</tr>
<tr>
<td>5</td>
<td>197.1</td>
<td>85.9</td>
</tr>
<tr>
<td>6</td>
<td>688.1</td>
<td>264.2</td>
</tr>
</tbody>
</table>

[-- : not measured]

TPP concentration measured in stream (µg/l):

<table>
<thead>
<tr>
<th>Week</th>
<th>Water-Outflow 2 h after soil add.</th>
<th>Water-Outflow 96 h after soil add.</th>
<th>Interstitial water at riffle</th>
<th>Interstitial water at pool</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>27.9</td>
<td>0.4</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>2</td>
<td>109.7</td>
<td>0.4</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>3</td>
<td>70.4</td>
<td>0.3</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>4</td>
<td>184.6</td>
<td>0.7</td>
<td>0.0</td>
<td>0.7</td>
</tr>
<tr>
<td>5</td>
<td>75.7</td>
<td>0.6</td>
<td>25.0</td>
<td>11.8</td>
</tr>
<tr>
<td>6</td>
<td>2105.2</td>
<td>2.4</td>
<td>33.2</td>
<td>10.5</td>
</tr>
<tr>
<td>7</td>
<td>--</td>
<td>0.7</td>
<td>21.5</td>
<td>19.5</td>
</tr>
<tr>
<td>10</td>
<td>--</td>
<td>0.2</td>
<td>0.7</td>
<td>0.4</td>
</tr>
<tr>
<td>18</td>
<td>--</td>
<td>0.0</td>
<td>0.5</td>
<td>0.1</td>
</tr>
</tbody>
</table>

[-- : not measured]

The authors discuss that biological degradation, desorption, and dilution were probably important factors in the loss of TPP from water and sediments during that study, which resulted in relative low exposure to the contaminant.

Test condition: Water used: Well water, pH at inlet and outlet: 7.31 - 8.04
Sediment used: locally obtained topsoil, 0.70 % organic C, 5 % sand, 77 % silt, 18 % clay.

Application of TTP to stream: Spraying of acetone solubilized TTP on soil. 24 h adsorption time and volatilization of acetone. The soil added to the stream was treated with TPP each week for 6 weeks with increasing amounts of TPP, beginning at 50 mg/kg and doubled each week to a high of 1600 mg/kg. The treated soil was flushed into the circulation water once
a week. The TPP contaminated soil was added during a water flow of 40 l/s for 4 hours, half of which was discharged at the end of the stream and replaced by fresh water.

<table>
<thead>
<tr>
<th>Reliability</th>
<th>(3) invalid</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flag</td>
<td>Critical study for SIDS endpoint</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Type</th>
<th>abiotic</th>
</tr>
</thead>
<tbody>
<tr>
<td>t1/2 pH4</td>
<td>at °C</td>
</tr>
<tr>
<td>t1/2 pH7</td>
<td>at °C</td>
</tr>
<tr>
<td>t1/2 pH9</td>
<td>at °C</td>
</tr>
<tr>
<td>Degradation</td>
<td>= 100 % after 10 minute(s) at pH 13 and °C</td>
</tr>
<tr>
<td>Deg. product</td>
<td></td>
</tr>
<tr>
<td>Method</td>
<td>other: Purified water was adjusted stepwise for pH using HCl or NaOH. TPP was added so that final concentration was 0.1 mg/l. Flask was stored in dark at 20 °C.</td>
</tr>
<tr>
<td>Year</td>
<td>1985</td>
</tr>
<tr>
<td>GLP</td>
<td>no data</td>
</tr>
<tr>
<td>Test substance</td>
<td>no data</td>
</tr>
</tbody>
</table>

| Remark | Reference in Japanese, cited according to English translation |
|--|
| Reliability | (3) invalid |
| Documentation | insufficient for assessment |

<table>
<thead>
<tr>
<th>Type</th>
<th>abiotic</th>
</tr>
</thead>
<tbody>
<tr>
<td>t1/2 pH4</td>
<td>at °C</td>
</tr>
<tr>
<td>t1/2 pH7</td>
<td>at °C</td>
</tr>
<tr>
<td>t1/2 pH9</td>
<td>at °C</td>
</tr>
<tr>
<td>Deg. product</td>
<td></td>
</tr>
<tr>
<td>Method</td>
<td></td>
</tr>
<tr>
<td>Year</td>
<td>1980</td>
</tr>
<tr>
<td>GLP</td>
<td>no data</td>
</tr>
<tr>
<td>Test substance</td>
<td>no data</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Result</th>
<th>second-order alkaline hydrolysis rate constant: 2.7 x 10E-1 M-1 x sec-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reliability</td>
<td>(4) not assignable</td>
</tr>
<tr>
<td>Original data cited are not available (unpublished data by the author)</td>
<td></td>
</tr>
</tbody>
</table>

3.1.3 STABILITY IN SOIL

<table>
<thead>
<tr>
<th>Type</th>
<th>other: laboratory, aerobic test system</th>
</tr>
</thead>
<tbody>
<tr>
<td>Radiolabel</td>
<td>yes</td>
</tr>
<tr>
<td>Concentration</td>
<td>5 mg/kg</td>
</tr>
<tr>
<td>Soil temperature</td>
<td>20 °C</td>
</tr>
<tr>
<td>Soil humidity</td>
<td>40 other: % of max. water capacity</td>
</tr>
<tr>
<td>Soil classification</td>
<td>other: BBA standard soil 2.2 (loamy sand)</td>
</tr>
<tr>
<td>Year</td>
<td></td>
</tr>
<tr>
<td>Content of clay</td>
<td>%</td>
</tr>
<tr>
<td>Content of silt</td>
<td>%</td>
</tr>
<tr>
<td>Content of sand</td>
<td>%</td>
</tr>
<tr>
<td>Organic carbon</td>
<td>2.2 %</td>
</tr>
<tr>
<td>pH</td>
<td></td>
</tr>
<tr>
<td>Cation exch. capacity</td>
<td></td>
</tr>
<tr>
<td>Microbial biomass</td>
<td>373 other: mg microbial carbon/kg soil (dw)</td>
</tr>
<tr>
<td>Dissipation time</td>
<td></td>
</tr>
<tr>
<td>DT50</td>
<td>37 day(s)</td>
</tr>
</tbody>
</table>
DT90
Dissipation : % after
Deg. product :
Method :
Year :
GLP : no data
Test substance : other TS: 98.4 % radioactive purity
Deg. products :

<table>
<thead>
<tr>
<th>Compound</th>
<th>Radioactivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>124-38-9</td>
<td>204-696-9</td>
</tr>
<tr>
<td>204-696-9 carbon dioxide</td>
<td>838-85-7</td>
</tr>
</tbody>
</table>

Remark : Control: In the heat-sterilized soil mainly unchanged TS was recovered within the 101 days of incubation, which indicates that the degradation of TPP in soil is mainly due to microbial action. Only 1.4 % of the applied radioactivity accounted to diphenylphosphate after 101 days.

Result : After 101 days allocation of the applied radioactivity: 48.3 % as CO2, 26.4 % non-extractable from soil, 26.6 % extractable from soil. The amount of CO2 formed increased steadily during the whole incubation time, whereas the amount of non-extractable residues increased steadily and then slowed down after an incubation time of 32 days. Only 0.2 % of the applied radioactivity accounted to diphenylphosphate after 101 days.

Test condition :
Aerobic test system
Incubation in the dark, solvent for aliquot application: acetonitrile, CO2 and volatiles were trapped in glass wool soaked with paraffin oil and soda lime resp.

Reliability : (2) valid with restrictions
Acceptable, well-documented publication/study report which meets basic scientific principles

Flag : Critical study for SIDS endpoint
11.01.2005 (3)

Type : other: laboratory, anaerobic test system
Radiolabel : yes
Concentration : 5 mg/kg
Soil temperature : 20 °C
Soil humidity : 40 other: % of max. water capacity
Soil classification : other: BBA standard soil 2.2 (loamy sand)
Year :

<table>
<thead>
<tr>
<th>Content of clay</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Content of silt</td>
<td>%</td>
</tr>
<tr>
<td>Content of sand</td>
<td>%</td>
</tr>
<tr>
<td>Organic carbon</td>
<td>2.2 %</td>
</tr>
<tr>
<td>pH</td>
<td></td>
</tr>
<tr>
<td>Cation exch. capacity</td>
<td></td>
</tr>
<tr>
<td>Microbial biomass</td>
<td></td>
</tr>
</tbody>
</table>
Dissipation time :
DT50 : 21 day(s)
DT90 :

Deg. product :
Method :
Year :
GLP : no data
Test substance : other TS: 98.4 % radioactive purity
Deg. products :

<table>
<thead>
<tr>
<th>Compound</th>
<th>Radioactivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>108-95-2</td>
<td>203-632-7</td>
</tr>
<tr>
<td>124-38-9</td>
<td>204-696-9</td>
</tr>
<tr>
<td>204-696-9 carbon dioxide</td>
<td>838-85-7</td>
</tr>
<tr>
<td>838-85-7</td>
<td>212-657-2</td>
</tr>
</tbody>
</table>

Result : After 102 days allocation of the applied radioactivity: 40.4 % as CO2, 6.3 % volatiles, 35.8 % extractable from soil, 24.04 % non-extractable from soil by methane/water (9:1). The amount of CO2 formed, increased steadily during the whole incubation time. The amount of non-extractable residues...
increased faster during the first days and slowed down to a steadily slow
increase. Only 0.5% of the applied radioactivity accounted to
diphenylphosphate and 1.6% to phenol after 120 days.

Test condition
: Anaerobic test system
Incubation in the dark, solvent for aliquot application: acetonitrile.
CO2 was adsorbed on soda lime, organic volatiles were passed over CuO
at 900 °C and measured as CO2.

Reliability
: (2) valid with restrictions
Acceptable, well-documented publication/study report which meets basic
scientific principles

Flag
11.01.2005
: Critical study for SIDS endpoint

3.2.1 MONITORING DATA

Type of measurement
: other: background and contaminated area

Media
: air

Concentration
: .000001 - .000094 µg/l

Method
: GC/MS

Result
: Before the short term studies 0.7 ng/m³ triphenyl phosphate were found in
the air of the larger office. 1 day after the installation of brand-new
computer equipment 84 ng/m³ triphenyl phosphate were found, which
decreased to 39 ng/m³ within 8 days.
In the air of other offices without computer equipment also 0.7 ng/m³
triphenyl phosphate were found.
In the air of the smaller offices with brand-new computer equipment, the
triphenyl phosphate level was 94 ng/m³ after 1 day of computer
installation. This level decreased to 10 ng/m³ within 150 d

Test condition
: - Air sampling via filter and 2 adsorbents in series, air flow rate 3 l/min,
samples collected for 700 min
- Short term emission studies were performed in an office with about 60 m³
(fully enclosed)
- Long term emission studies were performed in an office with about 25 m³
(fully enclosed)
- In the small offices brand-new PC equipment was placed which contained
up to 10 % w/w triphenyl phosphate in the outer cover
- GC (Varian 3400, Varian, Walnut Creek, CA) on DB-5 column, nitrogen-
phosphorus-detector and split/splitless injector
- GC/MS Varian 3400 plus Finnigan Incos 50 quadrupole mass
spectrometer

Test substance
: Triphenyl phosphate (used as a standard), purity > 98 % was purchased
from Aldrich Chemicals, Germany

Reliability
: (2) valid with restrictions
Basic data given

Flag
13.12.2004
: Critical study for SIDS endpoint

Type of measurement
: background concentration

Media
: other: particulate matter and indoor air in private houses

Concentration
: < .00001 µg/l

Method
: GC/MS

Remark
: Without clearly indicating the literature source, it is reported in a literature
survey that the indoor air concentrations of triphenyl phosphate are 0.01-
0.03 µg/m³. For drinking water, concentrations of triphenyl phosphate are
reported to be 0.12 µg/l

Result
: Indoor and outdoor triphenyl phosphate concentrations were below 0.01
µg/m³. Even in the air of several buildings which were thought to contain
triphenyl phosphate containing materials, no triphenyl phosphate was
<table>
<thead>
<tr>
<th>Test condition</th>
<th>Reliability</th>
<th>Flag</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Particulate matter extraction with methylene chloride</td>
<td>(2) valid with restrictions</td>
<td>Critical study for SIDS endpoint</td>
</tr>
</tbody>
</table>

Result

Triphenyl phosphate was detectable (limit of detection 0.0012 µg/m³) in 2 out of 6 houses tested. The concentration of triphenyl phosphate was 0.01 µg/m³ in indoor air of both houses.

Test condition

- Air sampling via charcoal filter, 1 l/min, approximately 3 d collecting period, total sampling volume 4.3 m³
- Extraction with toluene during ultrasonication
- GC (Hewlett-Packard 6890) on HP-1 column (methyl siloxane), HP 7683 auto sampler, with He as the carrier gas
- MS (HP 5973 MS) SIM mode
- Triphenyl phosphate (obtained from Wako Pure Chemical, Japan) was used as a standard

Reliability

(2) valid with restrictions

Flag

Critical study for SIDS endpoint

Type of measurement

background concentration

Media

air

Concentration

<= .00001 µg/l

Method

GC/MS

<table>
<thead>
<tr>
<th>Test condition</th>
<th>Reliability</th>
<th>Flag</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Grab samples collected in glass bottles</td>
<td>(2) valid with restrictions</td>
<td>Critical study for SIDS endpoint</td>
</tr>
</tbody>
</table>

Result

Triphenyl phosphate was found at the following sampling sites (µg/l):

- Sewage treatment plant (inlet): 16
- Sewage treatment plant (outlet): 2
- Delaware river mile 106 (2 miles upstream of the outlet, but tidal movement, and sewage treatment plant discharges travel about 7 miles upstream during high tide; tidal volume is about 1 order of magnitude larger than freshwater flow): 0.3
- Delaware river mile 108 (4 miles upstream of the outlet): 0.2
- Torresdale drinking water treatment plant (river water inlet located 6 miles upstream of the outlet of the sewage treatment plant): 0.2
- Torresdale drinking water treatment plant (drinking water): 0.03
- Delaware river mile 118 (14 miles upstream of the sewage treatment plant outlet, presumably no influence of the outlet): traces, not quantifiable

Reliability

(2) valid with restrictions

Flag

Critical study for SIDS endpoint
Type of measurement : other: Several industrialized and non-industrialized areas of the USA
Media : other: Water, sediment, and fish
Concentration :
Method :

Result :
- Triphenyl phosphate was detected in
 - 32 of 63 water samples (limit of detection 0.1 µg/l; concentrations in water up to 7.9 µg/l). The geometric mean of triphenyl phosphate concentrations in water (calculated using one half of detection limit for samples reported as non-detectable) was 0.12 µg/l.
 - 13 of 40 sediment samples (limit of detection 0.01 µg/g; concentrations in sediment up to 4 µg/g).
 - 16 of 82 fish (limit of detection 0.1 µg/g; concentrations in fish up to 0.6 µg/g).

Test condition :
- Water, sediment, and fish samples were collected at 13 site in the USA
- Water samples (900 ml) were obtained from the water column by moving sample tube opening on straight traverse line from bottom to surface at constant velocity
- Sediment samples were obtained with Ponar and Student-Ekman grab samplers
- 25 fish species were collected with gill nets and seine hauls
- Sediment samples and fish were frozen immediately after sampling with dry ice and stored in a freezer (-23 °C) until analysis

Reliability : (2) valid with restrictions
Flag : Critical study for SIDS endpoint
13.12.2004

Type of measurement : background concentration
Media : surface water
Concentration : <= .22 µg/l
Method : GC/MS

Result :
- Triphenyl phosphate was found in 14.1 % of 85 samples with a median = 0.040 µg/l and a maximum value of 0.22 µg/l

Test condition :
- Streams in the USA have been monitored at 139 sampling sites susceptible to contamination e.g. downstream of intense urbanization and livestock production in 1999 and 2000
- 1 l water samples extracted by CLLE (continuous liquid-liquid extraction) using methylene chloride
- analysis by GC/MS

Reliability : (2) valid with restrictions
Flag : Critical study for SIDS endpoint
13.12.2004

Type of measurement : concentration at contaminated site
Media : other: surface water, ground water
Concentration :
Method : GC/MS

Result :
- Triphenyl phosphate concentrations reached up to 0.280 µg/l in the river Ruhr (region with heavy industry and mining) in Germany. In different small tributaries of the river Ruhr mean concentrations of 0.4 µg/l were found. In a small creek which was dominated by the outflow of a sewage treatment plant, 2 µg/l were found. In the canal Emscher (Germany) concentrations up to 3.4 µg/l were measured. This sewer cannot be regarded as natural stream. Before entering the river Rhine the Emscher water is led through a
sewage treatment plant. No measured data from the outlet of this sewage treatment plant are available. In enriched groundwater of the Dortmund waterworks area no triphenyl phosphate could be detected (limit of detection 1 ng/l)

Test condition
- The river Ruhr was sampled at 20 sites from well to mouth into river Rhine
- GC/MS (HP 5971A, Hewlett-Packard)

Reliability
(2) valid with restrictions
Basic data given

Flag
Critical study for SIDS endpoint

Type of measurement
concentration at contaminated site

Media
other: wastewater treatment plant effluent

Concentration
3 µg/l

Method
GC/MS

Result
137 organic compounds were identified in the effluents of three large Swedish wastewater treatment plants. In the effluent from one out of these three wastewater treatment plants, triphenyl phosphate was found in a concentration of 3 µg/l

Test condition
- 3 Swedish wastewater treatment plants (treating both domestic and industrial wastewater) were sampled:
 - Henricksdal serves central and Southern Stockholm with 580000 inhabitant equivalents (hydraulic retention time 5-6 h, solids retention time 2-3 d, food/microorganisms ratio 0.1 kg COD/ kg of suspended substance/day)
 - GRYAAB serves Göteborg with 550000 inhabitant equivalents (hydraulic retention time 4.8 h, solids retention time 4.2 d, food/microorganisms ratio 0.56 kg COD/kg of suspended substance/day)
 - Sjoelunda serves Malmö and its surroundings with 247000 inhabitant equivalents (hydraulic retention time 4 h, solids retention time 2-3 d, food/microorganisms ratio 0.2-0.3 kg COD/kg of suspended substance/day)
- Sampling 1 week to one month in Dec. 1993 or Jan. 1994
- 1 sample per plant obtained by combining daily 2 l samples
- Solid phase extraction
- Analysis by GC (HP 5890, Hewlett/Packard) /MS (Incos 50, Finnigan MAT)

Reliability
(2) valid with restrictions
Basic data given

Flag
Critical study for SIDS endpoint

Type of measurement
other: food product monitoring

Media
food

Concentration

Method
GC

Method
Trialkyl and triaryl phosphates were surveyed in United Kingdom total diet samples
- Solvent extraction
- Liquid column clean up (with diatomite)
- GC with phosphorus specific detection (alkali flame ionization detector)
- Limit of detection 0.02 - 0.1 mg/kg (not further specified)
- Recovery from several food products: 90 - 105 % as checked by spiking experiments

Remark
It is not clear to what extend exposure to triphenyl phosphate occurred

Result
The total phosphates levels (tributyl phosphate, triphenyl phosphate, trioctyl phosphate) ranged from (mean) 0.05 mg/kg for beverages to 0.02 for unspecified meat products and 0.25 for offal. The mean daily intake for
3. ENVIRONMENTAL FATE AND PATHWAYS

3.2.2 FIELD STUDIES

3.3.1 TRANSPORT BETWEEN ENVIRONMENTAL COMPARTMENTS

3.3.2 DISTRIBUTION

- **Media**: air - biota - sediment(s) - soil - water
- **Method**: Calculation according Mackay, Level I
- **Year**: 1991
- **Remark**: Data used in calculation:
 - temperature (°C): 25
 - molar mass (g/mol): 326.29
 - vapor pressure (Pa): 8.35 x 10E-4
 - water solubility (g/m3): 1.90
 - log Kow: 4.59
 - Volumes in unit world (m3):
 - air: 6 000 000 000
 - water: 7 000 000
 - soil: 45 000
 - sediment: 21 000
 - susp. sediment: 35
 - biota (fish): 7
- **Result**: Target compartments:
 - 43.9 % soil
 - 41.0 % sediment
 - 14.3 % water
 - 0.7 % air
 - 0.07 % susp. sediment
 - 0.03 % biota (fish)
- **Reliability**: (2) valid with restrictions
- **Flag**: Critical study for SIDS endpoint

- **Media**: water - soil
- **Method**: Depending on soil properties hydrolysis (main product: diphenyl phosphate) was observed during the equilibration period, hence the determined values include TPP as well as diphenyl phosphate. Maximum degradation occured in silty clay.
- **Result**: Adsorption constants:
 - Koc
 - 2514 16.09 silty clay
 - 3561 79.05 loamy sand
 - 2756 71.67 silt loam
Desorption constants:
\[
\begin{array}{lll}
\text{Koc} & \text{Kd} \\
3363 & 21.52 & \text{silty clay} \\
3501 & 77.72 & \text{loamy sand} \\
2596 & 67.50 & \text{silt loam}
\end{array}
\]

Test condition: Study with [14C]TPP, at 20 °C, three different soils.

Soil characteristics:
- BBA standard soil 2.2 (loamy sand): 2.22% organic carbon;
- LUFA Speyer clay soil (silty clay): 0.64% organic carbon;
- soil Hoefchen (silt loam): 2.60% organic carbon;

Test concentrations 50, 37.5, 25, and 5% of water solubility (1; 0.75; 0.5; 0.1 mg TPP/l).

Adsorption/desorption equilibrium was reached after 48 hours.

Reliability: (2) valid with restrictions

Acceptable, well-documented publication/study report which meets basic scientific principles

Flag: Critical study for SIDS endpoint

Media: other: water - sediment

Method: other (measurement)

Year: 1983

Result: Mass balance (% radioactivity):

<table>
<thead>
<tr>
<th></th>
<th>in sediment</th>
<th>in water</th>
</tr>
</thead>
<tbody>
<tr>
<td>pond</td>
<td>85</td>
<td>15</td>
</tr>
<tr>
<td>river sediment</td>
<td>88.7</td>
<td>11.3</td>
</tr>
<tr>
<td>sand</td>
<td>78.9</td>
<td>21.1</td>
</tr>
</tbody>
</table>

Test condition: Study with [14C]TPP, three different sediments, sediment-to-water ratio: 1:5; four replicates.

Sediment characteristics:
- Sand (commercial silica: 0.1% organic carbon, pH 7.0),
- pond (silt clay: 3.7% organic carbon, pH 7.6)
- river (silty: 2.3% organic carbon, pH 7.7)

Sediments, drained of excess water were spiked with TPP at 50 and 500 µg/kg concentrations by 10 or 100 µl stock solution. After mixing, the sediments were flooded with 250 ml dechlorinated tap water and gently aerated while allowed to equilibrate for 2 d.

Reliability: (2) valid with restrictions

Study well documented, meets generally accepted scientific principles

Flag: Critical study for SIDS endpoint

Media: water - soil

Method: other (measurement)

Year: 1991

Result: Kp for clay is not reported because of a high coefficient of variation (>= 50 %). The authors explain that some of this variability may be due to the lack of uniform distribution of TPP spiked to the clay surface. However the mean value clay Kp was about three times higher than that of topsoil. The low organic carbon content of the clay suggests that non-organic carbon sorptive interactions may have played a role.

Topsoil sediment/water partition coefficients (organic carbon content 1.1 %):

\[
\begin{array}{l}
\text{Kp (24 h)} = 112 \pm 26 \quad \text{(N=4; soil-phase separation by filtration)} \\
\text{Kp (24 h)} = 96 \pm 41 \quad \text{(N=3; soil-phase separation by centrifugation)}
\end{array}
\]

Test condition: Study with commercial TPP, at 25 °C, two different sediments (topsoil and clay).
100 µg TPP in acetone was spiked to 100 mg air-dried sediment and later 100 ml deionized water was added. 24 hours shaking for equilibrium. TPP residue analysis with GC/thermionic detector.

Sediment characteristics:
- topsoil/loess (loamy sand): 1.12 % organic carbon
- montmorillonite clay: 0.33 % organic carbon

Reliability: (3) invalid
Relevant methodological deficiencies

14.12.2004

Media: water - soil
Method: Calculation acc. to Kenaga & Goring 1981 using the water solubility (1.9 mg/l) and octanol-water partition coefficient (4.2 x 10E4).
Result: Calculated soil sorption coefficient \(K_{oc} = 5500 \)
Reliability: (2) valid with restrictions
Accepted calculation method

07.05.2002

Media: water - soil
Method: Calculation acc. to Kenaga & Goring (eq. 4-5 in Lyman 1982) using the water solubility (1.9 mg/l).
Result: Calculated soil sorption coefficient \(K_{oc} = 3100 \)
Reliability: (2) valid with restrictions
Accepted calculation method

07.05.2002

Media: water - air
Method: other (calculation)
Year: 2001
Result: Henry's law constant \((25^\circ C): 1.8 \times 10E-2 - 3.6 \times 10E-2 \) Pa m3/mol (calculated from water solubility (1.9 mg/l) and vapor pressures (1.6 x 10E-4, 2.0 x 10E-4, and 1.07 x 10E-3 Pa)
Reliability: (2) valid with restrictions
Generally accepted calculation method

Flag: Critical study for SIDS endpoint

07.05.2002

Media: water - air
Method: other (calculation)
Year: 1985
Result: Henry's law constant \((25^\circ C): 4.03 \times 10E-3 \) Pa m3/mol
Reliability: (2) valid with restrictions
Generally accepted calculation method

07.05.2002
3.4 MODE OF DEGRADATION IN ACTUAL USE

3.5 BIODEGRADATION

<table>
<thead>
<tr>
<th>Type</th>
<th>aerobic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inoculum</td>
<td>activated sludge</td>
</tr>
<tr>
<td>Concentration</td>
<td>100 mg/l related to Test substance related to</td>
</tr>
<tr>
<td>Contact time</td>
<td></td>
</tr>
<tr>
<td>Degradation</td>
<td>83 - 94 (±) % after 28 day(s)</td>
</tr>
<tr>
<td>Result</td>
<td>readily biodegradable</td>
</tr>
<tr>
<td>Deg. product</td>
<td></td>
</tr>
<tr>
<td>Method</td>
<td>other: see remarks</td>
</tr>
<tr>
<td>Year</td>
<td>1992</td>
</tr>
<tr>
<td>GLP</td>
<td>no data</td>
</tr>
<tr>
<td>Test substance</td>
<td>no data</td>
</tr>
<tr>
<td>Remark</td>
<td>The test was conducted in accordance with "Biodegradation test of chemical substance by microorganisms etc." stipulated in the Order Prescribing the Items of the Test Relating to the New Chemical Substance (1974, Order of the Prime Minister, the Minister of Health and Welfare, the Minister of International Trade and Industry No. 1). This guideline corresponds to "301C, Ready Biodegradability: Modified MITI Test (I)" stipulated in the OECD Guidelines for Testing of Chemicals (1981)</td>
</tr>
<tr>
<td>Test condition</td>
<td>sludge concentration: 30 mg/l</td>
</tr>
<tr>
<td>Reliability</td>
<td>(1) valid without restriction guideline study</td>
</tr>
<tr>
<td>Flag</td>
<td>Critical study for SIDS endpoint (40)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Type</th>
<th>aerobic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inoculum</td>
<td>activated sludge, domestic, adapted</td>
</tr>
<tr>
<td>Concentration</td>
<td>18.3 mg/l related to Test substance related to</td>
</tr>
<tr>
<td>Contact time</td>
<td></td>
</tr>
<tr>
<td>Degradation</td>
<td>82 (±) % after 28 day(s)</td>
</tr>
<tr>
<td>Result</td>
<td></td>
</tr>
<tr>
<td>Deg. product</td>
<td></td>
</tr>
<tr>
<td>Method</td>
<td>other: modified Sturm Test (1973)</td>
</tr>
<tr>
<td>Year</td>
<td>1979</td>
</tr>
<tr>
<td>GLP</td>
<td>no</td>
</tr>
<tr>
<td>Test substance</td>
<td>other TS: purity > 90 %</td>
</tr>
<tr>
<td>Deg. products</td>
<td>124-38-9 204-696-9 carbon dioxide</td>
</tr>
<tr>
<td>Remark</td>
<td>Acclimated bacterial seed was prepared using a 14d Bunch-Chambers die-away with no transfer and 20 mg/l test substance. Ultimate biodegradation was investigated via CO2 measurement. Test result also secondary cited by Mayer, F.L. et al., Aquatic Toxicology and Hazard Assessment, Fourth Conference. ASTM STP 737, D.R. Branson and K.L. Dickson, Eds., 103-123 (1981)</td>
</tr>
<tr>
<td>Result</td>
<td>Based on CO2 evolution after 7 d: 61.9 % of the employed TPP was ultimately biodegraded.</td>
</tr>
<tr>
<td>Reliability</td>
<td>(2) valid with restrictions study well documented, meets generally accepted scientific principles</td>
</tr>
<tr>
<td>Date</td>
<td>Type</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------</td>
</tr>
<tr>
<td>14.12.2004</td>
<td>aerobic</td>
</tr>
<tr>
<td>19.07.2002</td>
<td>aerobic</td>
</tr>
</tbody>
</table>
Inoculum
other: river water

Concentration
1 mg/l related to Test substance related to

Contact time

Degradation
100 (±) % after 3 day(s)

Result
inherently biodegradable

Deg. product

Method
other: River die-away test

Year
1979

GLP
no

Test substance
other TS: purity >90 %

Remark
Heat-sterilized control in order to confirm, degradation was due to biodegradation and no other physical or chemical phenomenon.

Test result also secondary cited by Mayer, F.L. et al., Aquatic Toxicology and Hazard Assessment, Fourth Conference. ASTM STP 737, D.R. Branson and K.L. Dickson, Eds., 103-123 (1981)

Result
t1/2: 1.1 - 23 days, complete primary degradation after 2 - 4 days in river water.

Test condition
Settled Mississippi River water and TPP were mixed in sealed bottles and stored in the dark at room temperature. The bottles were analyzed periodically for the residual ester. Primary degradation was monitored via GC analysis.

Reliability
(2) valid with restrictions study well documented, meets generally accepted scientific principles

18.07.2002

Type
aerobic

Inoculum
activated sludge, domestic

Concentration
13 mg/l related to Test substance related to

Contact time

Degradation
93 (±11) % after 49 day(s)

Result
inherently biodegradable

Deg. product

Method
other: Modif. Semicontinuous Activated Sludge (SCAS) Method based on the procedure of the Soap and Detergent Association (1969)

Year
1979

GLP
no data

Test substance
other TS: purity > 90 %

Remark
TPP was tested in two parallel tests with at addition rates of 3 and 13 mg/l per 24h cycle resp. For measuring primary degradation 50 ml samples of mixed liquor were withdrawn a few minutes after feeding and at the end of the 24h cycle. The samples were extracted with hexane, concentrated and analyzed via GC/FID. Sampling was carried out on a one-cycle-per-week basis for each ester. No significant volatility losses were observed.

Modification from SCAS protocol: domestic activated sludge.

Test result also secondary cited by Mayer, F.L. et al., Aquatic Toxicology and Hazard Assessment, Fourth Conference. ASTM STP 737, D.R. Branson and K.L. Dickson, Eds., 103-123 (1981)

Result
Biodegradation at a feed rate of 3 mg/l per 24h cycle: 96 +/-2 % (test duration 84 d)

Biodegradation at a feed rate of 13 mg/l per 24h cycle:
Reliability

<table>
<thead>
<tr>
<th>Date</th>
<th>Value</th>
</tr>
</thead>
</table>
| 18.07.2002 | (2) valid with restrictions
study well documented, meets generally accepted scientific principles |

Type
- **aerobic**

Inoculum
- **other: river sediment**

Concentration
- **0.05 mg/l related to Test substance related to**

Deg. product

Method

Year
- **1989**

GLP
- **no**

Test substance
- **other TS: Eastman Chemicals, purity not reported**

Result
- **Primary degradation of TPP:**
 - after 3 days: 43.3 %
 - after 40 days: 86.9 %

- **CO2 evolution after**
 - 3 days: 0.2 %
 - 40 days: 17.4 %

- **Unextractable radioactivity from sediment after**
 - 3 days: 8.8 %
 - 40 days: 31.9 %

- **Extractable radioactivity from sediment after**
 - 3 days: 85.9 %
 - 40 days: 20.5 %

- **Radioactivity from water after filtration of sediment**
 - 3 days: 35.2 %
 - 40 days: 9.7 %

Less than 1 % of the radioactivity was trapped in PU foams indicating that volatilisation was not an important pathway of loss of TPP.

Test condition
- **14C-labeled TPP**
 - Experiments conducted in respirometer flasks with duplicate performance.
 - River sediment: 48% clay, 7% sand, 43% silt, 2.3% organic carbon, pH 7.7
 - Sediment-water ratio 1:20
 - 21 d pre-incubation without test substance at the intended incubation temperature of 25 °C.
 - 14C-TPP applied as acetone solution to the water column.

Reliability
- (2) valid with restrictions
study well documented, meets generally accepted scientific principles

Flag
- **Critical study for SIDS endpoint**

Type
- **anaerobic**

Inoculum
- **other: river sediment**

Concentration
- **0.05 mg/l related to Test substance related to**

Deg. product

Method

Year
- **1989**

GLP
- **no**

Test substance
- **other TS: Eastman Chemicals, purity not reported**

Deg. products
- **124-38-9 204-696-9 carbon dioxide**
Remark: The high CO2 evolution may reflect the fact that incubations were not strictly anaerobic.

Result: Primary degradation of TPP:
- after 3 days: 31.1%
- after 40 days: 89.7%

CO2 evolution after:
- 3 days: 0.8%
- 40 days: 21.9%

Unextractable radioactivity from sediment after:
- 3 days: 8.2%
- 40 days: 20.1%

Extractable radioactivity from sediment after:
- 3 days: 68.9%
- 40 days: 19.5%

Radioactivity from water after filtration of sediment:
- 3 days: 40.4%
- 40 days: 25.7%

Less than 1% of the radioactivity was trapped in PU foams indicating that volatilisation was not an important pathway of loss of TPP.

Test condition: 14C-labeled TPP.

Experiments conducted in respirometer flasks under nitrogen aeration in duplicate performance; 1% crystalline cellulose as additional source of carbon.

Characteristics of river sediment: 48% clay, 7% sand, 43% silt, 2.3% organic carbon, pH 7.7.
Sediment water ratio: 1:20
21 d pre-incubation without test substance at the intended incubation temperature of 25°C
TPP applied as acetone solution to the water column;

Reliability: (2) valid with restrictions
- study well documented, meets generally accepted scientific principles

Flag: Critical study for SIDS endpoint

14.12.2004

Type: aerobic
Inoculum: other: test with river sediment and test with pond sediment
Concentration: .1 mg/l related to Test substance related to
Deg. product:
Method:
Year: 1989
GLP: no
Test substance: other TS: Eastman Chemicals, purity not reported

Result: Unextractable radioactivity from sediment + water after 64 d:
- 25 °C: 15.4% test with pond sediment
- 10 °C: 15.4% test with pond sediment
- 25 °C: 38.8% test with river sediment

Extractable radioactivity from sediment + water after 64 d:
- 25 °C: 3.5% test with pond sediment
- 10 °C: 4.3% test with pond sediment
25 °C: 26.4 % test with river sediment

CO2 and volatiles not trapped/measured.

Test with 2 °C stopped after 6 days due to temperature rise in the culture room.

<table>
<thead>
<tr>
<th>Test condition</th>
<th>14C-labeled TPP</th>
</tr>
</thead>
</table>
| Experiments carried out in culture flasks under static conditions in duplicate performance.
| River sediment: 48% clay, 7% sand, 43% silt, 2.3% organic carbon, pH 7.7
| Pond sediment: 75% clay, 24% silt, 1% sand, 3.7% organic carbon, pH 7.6
| Sediment-water ratio 1:10; 21 d pre-incubation without test substance at the intended incubation temperature. Incubation temperatures: 25, 10, and 2°C.
| CO2 evolution not trapped.
| Application of TPP as aceton solution to water column.

Reliability: (2) valid with restrictions

Study well documented, meets generally accepted scientific principles

| 18.07.2002 |
| 1985 |
| aerobic |
| activated sludge, domestic |
| other TS: extra pure reagent from Tokyo Kasei Co., further purified |
| Reference in Japanese, cited according to English translation |
| Test on primary degradation of seven organic phosphate esters in the same test vessel |

| Test condition |
| Inoculum: 2000 mg/l (fresh weight, MLSS); TPP: 0.1 mg/l; |
| Reliability: (2) valid with restrictions |
| Basic data given |

| 11.11.2004 |
| 1985 |
| activated sludge, domestic, adapted |
| other TS: extra pure reagent from Tokyo Kasei Co., further purified |
| Test of biodegradation after acclimation of municipal sludge with seven organic phosphate esters in the same test vessel |

| Test condition |
| Inoculum: 2000 mg/l (fresh weight, MLSS); TPP: 0.1 mg/l; |
| Reliability: (3) invalid |
| Test not meaningful for statements on triphenyl phosphate as is, due to multiple test substances application per testing. |
Type: aerobic
Inoculum: activated sludge, industrial, adapted
Deg. product:
Method:
Year: 1980
GLP:
Test substance:

Remark: average TPP concentration in wastewater: 0.74 mg/l;
average TPP concentration in effluent: 0.007 mg/l;
average removal: 99%

Reliability: (4) not assignable
secondary literature (Original: Personal communication of FMC Corp. to
US-EPA in 1980)

13.05.2002

Type: aerobic
Inoculum: activated sludge
Contact time:
Degradation: 92 (±) % after
Result:
Deg. product:
Method:
Year: 1986
GLP:
Test substance:

Remark: elimination in purification plants
Result: Triphenyl phosphate influx concentration was 0.054-2.12 µg/l (mean
0.241), effluent concentration 0.005-0.082 µg/l (mean 0.019), and
elimination was 92 %.

Test condition: Osaka City wastewater treatment efficiency for triphenyl phosphate
determined in 1984.
Reliability: (4) not assignable
original reference in Japanese
Flag: Critical study for SIDS endpoint
14.12.2004

Type: aerobic
Inoculum: predominantly domestic sewage
Concentration: 3 mg/l related to
related to
Contact time:
Degradation: > 70 (±) % after 30 day(s)
Result:
Deg. product:
Method: other: "Geschlossener Flaschen-Test", precursor to later OECD Guide-line
301 D "Ready Degradability: Closed Bottle Test"
Year: 1978
GLP:
Test substance:

Remark: Emulsified with Emulgator W
Reliability: (4) not assignable
values taken from data compilation
15.05.2002

3.6 BOD5, COD OR BOD5/COD RATIO
3.7 BIOACCUMULATION

<table>
<thead>
<tr>
<th>Species</th>
<th>Oryzias latipes (Fish, fresh water)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exposure period</td>
<td>18 day(s) at 25 °C</td>
</tr>
<tr>
<td>Concentration</td>
<td>.01 mg/l</td>
</tr>
<tr>
<td>BCF</td>
<td>144</td>
</tr>
<tr>
<td>Elimination</td>
<td>yes</td>
</tr>
<tr>
<td>Method</td>
<td></td>
</tr>
<tr>
<td>Year</td>
<td>1982</td>
</tr>
<tr>
<td>GLP</td>
<td>no</td>
</tr>
<tr>
<td>Test substance</td>
<td>no data</td>
</tr>
<tr>
<td>Remark</td>
<td>the BCF values given are related to whole body</td>
</tr>
<tr>
<td>Result</td>
<td>TPP uptake in fish was rapid and increased gradually till day 18 of exposure (BCF after 2 d: ca. 60; after 18 d: 144). The authors suggest that this phenomenon is due to some alteration of metabolism or reduced biotransformation by the fish with increase of exposure time. After the fish were transferred to clean water, fast elimination occured and TPP concentrations in fish body decreased to levels below the detection limit within 24 h. The biological half-life is given to 1.2 h.</td>
</tr>
<tr>
<td>Test condition</td>
<td>continuous flow-through test, 70-100 fish in aquarium tank (10 l); fish fed once a day; 3-4 fish were taken out at various intervals for analysis; after 18 d fish were transfered to clean water and reared for 1-2 d; measured concentration of TS: 0.009 - 0.01 mg/l; analytical monitoring: FPD-GC; solubilizing agent: acetone</td>
</tr>
<tr>
<td>Reliability</td>
<td>(2) valid with restrictions</td>
</tr>
<tr>
<td>Flag</td>
<td>Critical study for SIDS endpoint</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Species</th>
<th>other: fish</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exposure period</td>
<td>at °C</td>
</tr>
<tr>
<td>Concentration</td>
<td></td>
</tr>
<tr>
<td>BCF</td>
<td>113.3</td>
</tr>
<tr>
<td>Elimination</td>
<td></td>
</tr>
<tr>
<td>Year</td>
<td></td>
</tr>
<tr>
<td>GLP</td>
<td></td>
</tr>
<tr>
<td>Test substance</td>
<td></td>
</tr>
<tr>
<td>Remark</td>
<td>Estimation equation with a correction factor for phosphate ester substances</td>
</tr>
<tr>
<td>Reliability</td>
<td>(2) valid with restrictions</td>
</tr>
<tr>
<td>Flag</td>
<td>Accepted calculation method</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Species</th>
<th>Carassius auratus (Fish, fresh water)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exposure period</td>
<td>72 hour(s) at 25 °C</td>
</tr>
<tr>
<td>Concentration</td>
<td>.25 mg/l</td>
</tr>
<tr>
<td>BCF</td>
<td>110</td>
</tr>
<tr>
<td>Elimination</td>
<td></td>
</tr>
<tr>
<td>Method</td>
<td></td>
</tr>
<tr>
<td>Year</td>
<td>1981</td>
</tr>
<tr>
<td>GLP</td>
<td>no data</td>
</tr>
<tr>
<td>Test substance</td>
<td>no data</td>
</tr>
<tr>
<td>Result</td>
<td>Goldfish took up TPP rapidly within the first 5 hours but at a very slow rate thereafter. The uptake kinetic has been described for</td>
</tr>
</tbody>
</table>
OECD SIDS TRIPHENYL PHOSPHATE

3. ENVIRONMENTAL FATE AND PATHWAYS

ID: 115-86-6

DATE: 20.08.2002

24 h: BCF = 150
48 h: BCF = 130
72 h: BCF = 110

Depuration has not been determined.

Test condition:
- static test;
- 3-5 fish per beaker (2 l); at total 3-4 beakers were used (one served as control for stability of TS in water); fish weight: 0.8-2.8 g; fish not fed during the test; test solution not aerated; analysis of fish via GLC

Reliability:
- (2) valid with restrictions
 - study well documented, meets generally accepted scientific principles

Flag:
- Critical study for SIDS endpoint

Species:
- other: Tursiops truncatus

Exposure period:
- at °C

Concentration:

Elimination:

Method:
- other: analysis of blubber of animals died during unusual mortality events

Year:
- 1995

GLP:
- no

Test substance:
- other TS: triphenyl phosphate, highest purity possible, supplied by Supelco Inc. (Bellafonte, PA) and/or Ultra scientific Inc. (North Kingstown, RI)

Method:
- In 1990 dolphins (Tursiops truncatus) were collected during an unusual mortality event in the Gulf of Mexico. The cause of death could not be identified. For gathering background information on organic chemicals, metals and selenium, blubber of the dead dolphins had been analyzed

Remark:
- It is likely that the unusual high triphenyl phosphate content of sucklings (6 animals) is due to a single outlayer: A range from 17 to 3790 ng/g lipid and a mean of 863 ng/g lipid was found. If these numbers are correct, one suckling had a concentration of 3790 ng/g lipid and all other animals contributed in average 278 ng/g lipid, or the second highest value possible was 1303 ng/g lipid.

Result:
- Several substances, among them triphenyl phosphate, were detected in the blubber.
 - For sucklings a mean triphenyl phosphate content of 863 ng/g lipid (range: 17 - 3790 ng/g lipid) was found, in immature animals the mean concentration was 68 ng/g lipid (range: 19 - 244) and in adult females the mean concentration was 30 ng/g lipid (range: 19 - 42). The mean triphenyl phosphate concentration in adult males from different locations was in the range of 25 - 56 ng/g lipid with single values in the range of 15 - 142 ng/g lipid.
 - In general, substances which are thought to bioaccumulate (e.g. PCBs, DDT, DDE, polybrominated biphenyls, Mirex) were higher in adult males than in sucklings, but lower in adult females than in adult males.

Test condition:
- During unusual mortality events in the Gulf of Mexico, 6 suckling calves, 5 weaned calves, 5 adult females (4 of which were pregnant), 9 adult males were collected from the Gulf coast in 1990 (mostly from Texas). 2 adult pregnant females were collected in the Gulf of Mexico and a 26 year-old male dolphin, which had died after 20 years of captivity for was obtained from San Diego, CA.
 - Blubber extracted in high speed blender
 - Isolation of analytes by gel permeation chromatography
 - Quantification by electron impact GC/MS
 - Quality checks by reagent/solvent blanks, duplicates, analyte fortified samples

Reliability:
- (2) valid with restrictions

Flag:
- Critical study for SIDS endpoint
14.12.2004

Species: Oryzias latipes (Fish, fresh water)
Exposure period: 72 hour(s) at 25 °C
Concentration: .25 mg/l
Elimination: yes
Method:
Year: 1981
GLP: no data
Test substance: no data

Result: The initial TPP concentration dropped below 50 % within the first 5 hours of exposition with killfish. The authors repeated the test with a TPP concentration of 0.3 mg/l, but as soon as killfish was inserted the TPP concentration dropped to the same extend as reported above. The TPP concentration in a control beaker without fish remained stable during 72 hours. At a parallel test with Carassius auratus the required test substance concentration remained in the range of 100 to 80 % of the initial concentration. Thus the BCF cited by the authors of 250 is regarded as invalid.

Test condition: static test;
10-20 fish in one beaker (2 l); at total 3-4 beakers were used (one served as control for stability of TS in water); test solution not aerated; analysis of fish via GLC

Reliability: (3) invalid
study well documented and meets generally accepted scientific principles, but test substance concentration was not kept >= 80 % of the initial concentration.

14.12.2004

Species: other: Oncorhynus mykiss, fry (previously Salmo gairdneri)
Exposure period: 90 day(s) at °C
Concentration:
Elimination:
Method:
Year: 1981
GLP: no
Test substance: no data

Remark: Composite sample of rainbow trout fry (n=25; whole fish) were analysed on TPP (concentration of TPP used in the study: 0.12 µg/l)

Result: BCF average value: 271
BCF range: 132 - 364

Reliability: (3) invalid
insufficient documentation: no specification of lipid content of the fry
divergence to standard test guidelines: use of larvae (usually higher lipid content than adults)

Flag: Critical study for SIDS endpoint

14.12.2004

Species: other: Lemna minor, Typha spec., Pimephales promelas
Exposure period: 105 day(s) at °C
Concentration: 60 µg/l
Elimination: yes
Method: other: Artificial pond test
Year: 1982
GLP: no
Test substance: other TS: 14C TPP synthesized from 14C phenol, unlabelled TPP from Eastman Chemicals

Method: Artificial pond test with 14C-labeled TPP, applied once in the beginning of
the test. Evaluation of the distribution of 14 C within the test system, consisting of water, sediment, duckweed (Lemna minor), cattail (Typha sp.), and fish (Pimephales promelas) was followed over a time period of 105 days (data reported for the first 10 days).

Result: Since no substance specific analysis has been made, no CO2 has been trapped, and the authors state themselves that there is a considerable error associated with the different compartment weights, this study is considered a first approach to the behaviour of TPP in the environment. Although no reliable data on accumulation of TPP can be derived from this study, BCFs for Lemna minor and Typha sp. were stated to be < 50 (duckweed 43, cattail < 1), and 68-160 for Pimephales promelas.

Reliability: (4) not assignable
Documentation insufficient for assessment

Flag: Critical study for SIDS endpoint

Species: other: fish

Exposure period: at °C

Concentration:

Elimination:

Method: other: calculated acc. to Veith et al. cited in Bysshe (1982) equation 5-2 at Lyman, W.J. et al., Handbook of chemical property estimation, p 5-1, New York

Year: 1985

GLP:

Test substance:

Remark: The measured BCF result of tricresylphosphate is cited with 165 (32 d, Pimephales promelas) in Bysshe 1982. This test result has been used besides 55 other chemicals for derivation of the above mentioned equation (log BCF = 0.85 log Kow - 0.7). Calculation of the theoretical BCF of tricresylphosphate based on this equation and a measured log Kow of 5.1 comes to a BCF of 4300.

Result: Calculated BCF of 1800

Reliability: (3) invalid
Relevant methodological deficiencies

Species: other: Oncorhynus mykiss (previously Salmo gairdneri) and Phimephales promelas

Exposure period: at °C

Concentration:

Elimination:

Method:

Year: 1983

GLP:

Test substance:

Result: Measurements of the TPP concentration in the aquaria showed rapid and strong loss of the test substance within 24 h:

Tests with Oncorhynchus mykiss:
Initial concentration of 50 µg/l was reduced to 47 % and initial concentration of 5 µg/l was reduced to 55 %.

Tests with Pimephales promelas:
Initial concentration of 50 µg/l was reduced to 36 % and initial concentration of 5 µg/l was reduced to 22 %.

Thus deduction of BCF values are not suitable according to todays testing standards.
Test condition: 14C-labeled TPP,
Static test system, short-term exposures (24 h) to TPP concentrations of 5 and 50 µg/l at 10 °C.
Test fish: Oncorhynchus mykiss and Pimephales promelas.

Reliability: (3) invalid
Relevant methodological deficiencies
02.08.2002 (50)

Species: other: Oncorhynus mykiss (previously Salmo gairdneri)
Exposure period: 24 hour(s) at 10 °C
Concentration: 50 µg/l
Elimination:
Method:
Year: 1980
GLP: no data
Test substance: other TS: >= 99%
Method: 14C-labeled TPP,
Several tests with dechlorinated water and river water were performed with rainbow trout fry's. The test waters showed pH values of 8.12 - 8.36. The fingerlings were exposed to TS for 24 h and then transferred to a tank with continuous flow of dechlorinated city water.
Result: Based on the best rate constants for uptake and clearance "worst case" estimates for bioaccumulation (related to whole fish) were calculated.
No measured BCF values by comparison of TS concentration in fish and water are reported.
Reliability: (3) invalid
Does not meet important criteria of today standard methods
13.01.2005 (51)

Species: other: Pomacea canaliculata Lamarck (Golden apple snail)
Exposure period: at °C
Concentration:
Elimination:
Method:
Year: 2000
GLP:
Test substance:
Reliability: (3) invalid
Documentation insufficient for assessment
14.05.2002 (52)

3.8 ADDITIONAL REMARKS

Memo: Bioavailability Test with Chironomus tetans
Method: TPP (purity >98 %);
Chironomus tetans larvae, 4th instar;
Sediment:
Pond (silty clay): 0% sand, 25% silt, 75% clay, 3.7% organic carbon, pH 7.6
River (silty): 7% sand, 45% silt, 48% clay, 2.3% organic carbon, pH 7.7
Sand (commercial silica sand): 100% sand, 0% silt, 0% clay, 0.1% organic carbon, pH 7.0
50 g wet weight sediment per jar was spiked with 50 and 500 μg/kg concentrations by addition of 10 or 100 μl of acetone solved stock solution. Addition of 250 ml dechlorinated tap water. Four replicates of each concentration, 2 days gently aeration before addition of larvae to allow equilibration of the sediment-water system.

Exposition of larvae in screened container suspended in the water or directly to the water where they established themselves in the sediment. Chemical analysis only by determination of radioactivity. Indistinct report whether TPP was the only test substance in each jar or whether it was a mixture of several substances. No explicit concentration data of larvae held in water column for comparative purposes. Accumulation data in Fig. 1 are interpreted as steady state at 24 h though after 96 h exposure an obvious decline of test substance concentration in the test organisms had occurred.

Reliability: (3) invalid
Documentation insufficient for assessment. Test results are based on 24 h exposure which is meant to be steady state. 96 h exposure data in Fig. 1 showed an obvious decline of test substance concentration in the test organisms.

16.05.2002

Memo: TPP from thermolysis of polymer powder

Method: Commercial polycarbonate and polyphenylene was ground to powder and placed into a thermobalance under reduced pressure in an air stream for thermogravimetric analysis. Thermolysis of the powder up to 250 °C and identification of the volatiles was achieved by a GC injection port directly connected to a GC-MS system.

Result: Heating a commercially polycarbonate specimen as powder (extremely high surface) showed weight loss beginning at 420 °C, whereas a commercially polyphenylene specimen as powder showed weight loss beginning at 190 °C. Injection molding temperatures for polycarbonate polymers are between 249 to 315 °C.

GC/MS analysis of vapours resulting from heating the polycarbonate powder and the polyphenylene powder to 250 °C yielded weight loss of 1 % and 8 % resp. and weight fractions of 0.05 % TPP and 3.6 % TPP resp. referring to the loss in weight.

Reliability: (3) invalid
Unrealistic test conditions

01.08.2002
4.1 ACUTE/PROLONGED TOXICITY TO FISH

<table>
<thead>
<tr>
<th>Type</th>
<th>static</th>
</tr>
</thead>
<tbody>
<tr>
<td>Species</td>
<td>Oncorhynchus mykiss (Fish, fresh water)</td>
</tr>
<tr>
<td>Exposure period</td>
<td>96 hour(s)</td>
</tr>
<tr>
<td>Unit</td>
<td>mg/l</td>
</tr>
<tr>
<td>LC50</td>
<td>0.85</td>
</tr>
<tr>
<td>Limit test</td>
<td>no</td>
</tr>
<tr>
<td>Analytical monitoring</td>
<td>no</td>
</tr>
<tr>
<td>Method</td>
<td>OECD Guide-line 203 "Fish, Acute Toxicity Test"</td>
</tr>
<tr>
<td>Year</td>
<td>1981</td>
</tr>
<tr>
<td>GLP</td>
<td>no data</td>
</tr>
<tr>
<td>Test substance</td>
<td>other TS: 100%</td>
</tr>
</tbody>
</table>

Result
- 95%-confidence interval 96 h LC50: 0.72-1.01 mg/l; all values relate to nominal concentration.

Test condition
- 10 fish per concentration and controls (blank/vehicle); fish length/weight (average): 49 mm/0.94 g, fish not fed during the test; temperature: ca. 15°C; test water: chlorinated tap water with hardness 172 mg/l CaCO3; pH 7.8 - 8.1; dissolved oxygen: 5.4-6.7 mg/l (at the end of the test) solubilizing agents: octanol (>0.004 ml/l), Tween 20 (>0.07 ml/l and ethyleneglycolmonomethylether (>0.02 ml/l); vehicle control;

Reliability
- (2) valid with restrictions

Flag
- Critical study for SIDS endpoint

<table>
<thead>
<tr>
<th>Type</th>
<th>static</th>
</tr>
</thead>
<tbody>
<tr>
<td>Species</td>
<td>Oncorhynchus mykiss (Fish, fresh water)</td>
</tr>
<tr>
<td>Exposure period</td>
<td>96 hour(s)</td>
</tr>
<tr>
<td>Unit</td>
<td>mg/l</td>
</tr>
<tr>
<td>LC50</td>
<td>0.4</td>
</tr>
<tr>
<td>Limit test</td>
<td>no data</td>
</tr>
<tr>
<td>Analytical monitoring</td>
<td>no data</td>
</tr>
<tr>
<td>Method</td>
<td>other: EPA 660/3-75-009: Method for acute toxicity tests with fish, macroinvertebrates and amphibians (1975)</td>
</tr>
<tr>
<td>Year</td>
<td>1981</td>
</tr>
<tr>
<td>GLP</td>
<td>no</td>
</tr>
<tr>
<td>Test substance</td>
<td>no data</td>
</tr>
</tbody>
</table>

Result
- 95% confidence limit 96h LC50: 0.28-0.50 mg/l

Reliability
- (2) valid with restrictions

Flag
- Critical study for SIDS endpoint

<table>
<thead>
<tr>
<th>Type</th>
<th>static</th>
</tr>
</thead>
<tbody>
<tr>
<td>Species</td>
<td>Cyprinodon variegatus (Fish, estuary, marine)</td>
</tr>
<tr>
<td>Exposure period</td>
<td>96 hour(s)</td>
</tr>
<tr>
<td>Unit</td>
<td>mg/l</td>
</tr>
<tr>
<td>LC50</td>
<td>> .32 - .56</td>
</tr>
<tr>
<td>Limit test</td>
<td>no data</td>
</tr>
<tr>
<td>Analytical monitoring</td>
<td>no data</td>
</tr>
<tr>
<td>Method</td>
<td>other: acc. to EPA 660/3-75-009: Methods for acute toxicity tests with fish, macroinvertebrates and amphibians (1975)</td>
</tr>
<tr>
<td>Year</td>
<td>1981</td>
</tr>
<tr>
<td>GLP</td>
<td>no</td>
</tr>
</tbody>
</table>
Test substance : no data
Reliability : (2) valid with restrictions
study conducted acc. to national standard methods without
detailed documentation (pH, dissolved oxygen, and water
hardness of test medium not stated)
Flag 17.05.2002 : Critical study for SIDS endpoint

Type : static
Species : Pimephales promelas (Fish, fresh water)
Exposure period : 96 hour(s)
Unit : mg/l
LC50 : .66
Limit test :
Analytical monitoring :
Method :
Year : 1981
GLP :
Test substance : no data
Result :
Reliability : (2) valid with restrictions
study conducted acc. to national standard methods without
detailed documentation (pH, dissolved oxygen, and hardness
of test medium not stated)

15.05.2002

Type : static
Species : Carassius auratus (Fish, fresh water)
Exposure period : 96 hour(s)
Unit : mg/l
LC50 : .7
Limit test :
Analytical monitoring :
Method :
Year : 1981
GLP :
Test substance : no data
Test condition :
Reliability : (2) valid with restrictions
study well documented, meets generally accepted scientific
principles

15.05.2002

Type : static
Species : Lepomis macrochirus (Fish, fresh water)
Exposure period : 96 hour(s)
Unit : mg/l
LC50 : = .78
Limit test :
Analytical monitoring :
Method :
Year : 1991
GLP : no data
Test substance : other TS: 99%

Remark : During toxicity tests with sediment, neither montmorillonite clay nor topsoil adversely affected fish survival under the test conditions used (1 g soil/l). However, in the presence of montmorillonite and topsoil bioavailability of TPP was reduced indicated by numerically higher LC50 values.

Result : 95% confidence interval 96 h LC50: 0.47-1.04 mg/l (nominal)
Test condition : 10 fish (0.5-1.0 g each); temperature: 22°C; solubilizing agent: acetone
Reliability : (2) valid with restrictions
test conducted in accordance to national standard methods.
Detailed documentation of water characteristics given in an other publication, no detailed information on pH and dissolved oxygen for this test given.

15.05.2002 (38)

Type : static
Species : other: Oncorhynchus mykiss, fry
Exposure period : 96 hour(s)
Unit : mg/l
LC50 : = .36
Limit test :
Analytical monitoring : no data
Method : other: acc. to standardized acute toxicity methods by US-EPA (Committee on methods for toxicity testing with aquatic organisms (1975)
Year : 1983
GLP : no
Test substance : other TS: 99%

Remark : 95% confidence interval LC50: 0.31-0.41 mg/l;
EC50: 0.30 mg/l (cumulative effects of mortality, immobility, and loss of equilibrium)
95% confidence interval EC50: 0.24-0.37 mg/l
Test condition : 10 fish (fry 12 days past the swim-up stage) per jar,
average weight: 0.11 g, average total length: 24 mm
Reliability : (2) valid with restrictions
test conducted in accordance with national standard methods
without detailed documentation (pH, dissolved oxygen, and water hardness of test medium not stated)

31.07.2002 (55)

Type : static
Species : Oryzias latipes (Fish, fresh water)
Exposure period : 96 hour(s)
Unit : mg/l
LC50 : 1.2
Limit test :
Analytical monitoring : yes
Method : other
Year : 1981
GLP : no data
Test substance :

Result : The authors determined a 96 h-LC50 = 1.2 mg/l for Oryzias latipes.
Analytical monitoring with GLC analysis of the test water showed the TPP concentration to decline rapidly after insertion of the fish. This effect has not been observed with Carassius auratus in parallel testing by the authors. There is no evidence in the publication whether the concentration dropped due to absorption or pH relating alteration of TPP.
<table>
<thead>
<tr>
<th>Test condition</th>
<th>7-9 fish per concentration level, weight of fish: 0.1-0.2 g; fish were not fed during the test; test solution: 25°C, not aerated, pH values of test medium not given.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reliability</td>
<td>(2) valid with restrictions study well documented, meets generally accepted scientific principles</td>
</tr>
<tr>
<td>Date</td>
<td>31.07.2002</td>
</tr>
<tr>
<td>Type</td>
<td>static</td>
</tr>
<tr>
<td>Species</td>
<td>Leuciscus idus (Fish, fresh water)</td>
</tr>
<tr>
<td>Exposure period</td>
<td>48 hour(s)</td>
</tr>
<tr>
<td>Unit</td>
<td>mg/l</td>
</tr>
<tr>
<td>Limit test</td>
<td></td>
</tr>
<tr>
<td>Analytical monitoring</td>
<td>no data</td>
</tr>
<tr>
<td>Method</td>
<td>other: Bestimmung der Wirkung von Wasserinhaltstoffen auf Fische. DEV, L 15 (1979)</td>
</tr>
<tr>
<td>Year</td>
<td>1979</td>
</tr>
<tr>
<td>GLP</td>
<td>no data</td>
</tr>
<tr>
<td>Test substance</td>
<td>no data</td>
</tr>
<tr>
<td>Result</td>
<td>Screening tests on toxicity of TPP without and with solubility promoter (with 10 fish each)</td>
</tr>
<tr>
<td>1st running</td>
<td>10 mg/l TPP in water: after 1/2 hour = 0 death</td>
</tr>
<tr>
<td></td>
<td>10 mg/l TPP in water: after 14 hours = 10 death</td>
</tr>
<tr>
<td>2nd running</td>
<td>10 mg/l TPP in water: after 1 hour = 10 death</td>
</tr>
<tr>
<td></td>
<td>5 mg/l TPP in water: after 48 hours = 0 death</td>
</tr>
<tr>
<td>3rd running</td>
<td>3 mg/l TPP(+aceton) in water: after 2 hours = 10 death</td>
</tr>
<tr>
<td></td>
<td>1 mg/l TPP(+aceton) in water: after 14 hours = 10 death</td>
</tr>
<tr>
<td>Test condition</td>
<td>Test water acc. to German DIN 003842, part 15; room temperature; control with aceton (0.6 ml aceton/l water): no effect after 48 h.</td>
</tr>
<tr>
<td>Reliability</td>
<td>(4) not assignable Basic data given; the test is regarded valid for screening purposes.</td>
</tr>
<tr>
<td>Date</td>
<td>31.07.2002</td>
</tr>
<tr>
<td>Type</td>
<td>static</td>
</tr>
<tr>
<td>Species</td>
<td>Lepomis macrochirus (Fish, fresh water)</td>
</tr>
<tr>
<td>Exposure period</td>
<td>96 hour(s)</td>
</tr>
<tr>
<td>Unit</td>
<td>mg/l</td>
</tr>
<tr>
<td>LC50</td>
<td>290</td>
</tr>
<tr>
<td>Limit test</td>
<td></td>
</tr>
<tr>
<td>Analytical monitoring</td>
<td>no</td>
</tr>
<tr>
<td>Method</td>
<td>other</td>
</tr>
<tr>
<td>Year</td>
<td>1975</td>
</tr>
<tr>
<td>GLP</td>
<td>no</td>
</tr>
<tr>
<td>Test substance</td>
<td>no data</td>
</tr>
<tr>
<td>Remark</td>
<td>The authors state: Many of the chemicals in the tests had limited water solubilities. The values given for the LC50 reflect the total amount of substance introduced into the water and not simply the soluble fraction of the substance. The results are an overall indication of expected toxicity of the chemicals should they be introduced into the water in a pure state under acute spill circumstances.</td>
</tr>
<tr>
<td>Test condition</td>
<td>fish length: 33-75 mm; fish not fed for 48 h prior to</td>
</tr>
</tbody>
</table>
testing; dilution water: potable well water (pH 7.6-7.9, hardness: 55 mg/l as CaCO3); temperature 23°C; aeration of test solution if necessary

Reliability: (3) invalid
Well-documented publication/study report with the aim of indicating an expected toxicity under acute spill circumstances. However, the study does not meet important criteria of today standard methods (e.g. test substance concentration at solubility threshold in water).

31.07.2002

Type	static
Species	Menidia beryllina (Fish, estuary, marine)
Exposure period	96 hour(s)
Unit	mg/l
LC50	95
Limit test	
Analytical monitoring	no
Method	other
Year	1975
GLP	no
Test substance	no data

Remark: The authors state:
Many of the chemicals in the tests had limited water solubilities. The values given for the LC50 reflect the total amount of substance introduced into the water and not simply the soluble fraction of the substance. ... The results are an overall indication of expected toxicity of the chemicals should they be introduced into the water in a pure state under acute spill circumstances.

Test condition: open test system; fish length: 40-100 mm; continuous aeration; dilution water: potable well water (pH 7.6-7.9, hardness: 55 mg/ l as CaCO3); temperature: 20°C

Reliability: (3) invalid
Well-documented publication/study report with the aim of indicating an expected toxicity under acute spill circumstances. However, the study does not meet important criteria of today standard methods (e.g. test substance concentration at solubility threshold in water).

31.07.2002

4.2 ACUTE TOXICITY TO AQUATIC INVERTEBRATES

Type	
Species	Daphnia magna (Crustacea)
Exposure period	48 hour(s)
Unit	mg/l
EC50	1
Analytical monitoring	no data
Method	other: US EPA 660/3-75-009: Method for acute toxicity tests with fish, macroinvertebrates and amphibians (1975)
Year	1981
GLP	no
Test substance	no data

Result: 95% confidence limit 48h-EC50: 0.86-1.2 mg/l

Test condition: static test system

Reliability: (2) valid with restrictions
study conducted acc. to national standard methods without detailed documentation (pH of test medium not stated)

Flag 16.05.2002: Critical study for SIDS endpoint
Type: static

Species: Daphnia magna (Crustacea)

Exposure period: 48 hour(s)

Unit: mg/l

EC50: 1.35

Analytical monitoring: no

Method: other: acc.to US EPA-660/3-75-009: Methods for acute toxicity tests with fish, macroinvertebrates and amphibians (1975)

Year: 1981

GLP: no

Test substance: no data

Result: 95% confidence limits: 1.23-1.56 mg/l; all values relate to nominal concentrations

Test condition: 5 daphnids per vessel; 4 replicates; one control vessel; beakers covered with watch-glasses; temperature: 20°C; 16 h light/8 h darkness; at the end of the test: dissolved oxygen: 7.03-7.19 mg/l; pH 8.6; DMF as solubilizing agent (>1.5 ml/l); dilution water: reconstituted water

Reliability: (1) valid without restriction

test conducted acc. to national standard methods; not clearly stated if vehicle control was performed

16.05.2002 (58)

Type: static

Species: Mysidopsis bahia (Crustacea)

Exposure period: 96 hour(s)

Unit: mg/l

Analytical monitoring: no data

Method: other: US-EPA 660/3-75-009: Methods for acute toxicity tests with fish, macroinvertebrates and amphibians (1975)

Year: 1981

GLP: no

Test substance: no data

Result: 96 hour LC50: > 0.18 < .32 mg/l

Reliability: (2) valid with restrictions

study conducted acc. to national standard method without detailed documentation (e.g. test conditions, use of vehicle)

Flag: Critical study for SIDS endpoint

29.07.2002 (17)

Type: static

Species: other: Gammarus pseudolimnaeus (Scud)

Exposure period: 96 hour(s)

Unit: mg/l

EC50: .25

Analytical monitoring: no

Method: other: acc. to EPA 660/3-75-009: Method for acute toxicity tests with fish, macroinvertebrates and amphibians (1975)

Year: 1975

GLP: no

Test substance: other TS: 99%

Result: 95% confidence interval 96 h EC50: 0.16-0.39 mg/l

Test condition: test animals: mid-instar, 60-90 days old; temperature: 17°C; solubilizing agent: acetone

Reliability: (2) valid with restrictions

study conducted acc. to national standard methods without...
detailed information on test conditions

15.05.2002

Type: semistatic
Species: Crangon crangon (Crustacea)
Exposure period: 96 hour(s)
Unit: mg/l
LC50: 0.304
Analytical monitoring: yes
Year: 1988
GLP: yes
Test substance: other TS: technical grade TPP (Ciba Geigy DVP 438)

Remark: Analytical monitoring showed that up to 50% of the TS was precipitated or lost from the test solution in all concentrations tested. LC50 values have been calculated based on measured concentrations

Result: 95% confidence interval 96 h LC50: 0.22-0.44 mg/l

Moult deaths at a maximum of 5 out of 20 animals are recorded for the seawater control (5/20), the solvent control (3/20), and the lowest test concentration (4/20). Moult deaths are not recorded as mortality according to the test rules of MAFF. Mortality shown in this test follows a dose related effect after 96 hours:
0.2 mg/l 3 deaths
0.5 mg/l 8 deaths
1.0 mg/l 18 deaths
2.0 mg/l 20 deaths

Test condition: test organisms: 20 animals per vessel, average weight/length: 0.57 g/36 mm;
renewal of test solution at 24 h intervals, continuous agitation;
filtered dilution water: seawater, salinity: 34.92-35 °/oo; temperature: 14.5-15.7°C; dissolved oxygen: 7.0-7.6 mg/l; pH 7.8-8.1; solubilizing agent: acetone (1 ml/l); solvent and seawater controls

Reliability: (2) valid with restrictions
Test procedure according to national standards

06.12.2004

Type: semistatic
Species: Crangon crangon (Crustacea)
Exposure period: 96 hour(s)
Unit: mg/l
LC0: > 2.5
Analytical monitoring: yes
Year: 1988
GLP: yes
Test substance: other TS: technical grade TPP (Ciba Geigy DVP 438)

Remark: There is no mortality shown in this test ascribable to the test substance. Moult deaths are recorded for the seawater control, and all test concentrations. Moult deaths are not recorded as mortality according to the test rules of MAFF.

The LC0 value is based on nominal concentration.

Analytical measurements indicate that at 1.0 and 2.5 mg/l
less than 20% of the TS was present after each 24 h of exposure and that in the lowest concentration (0.25 mg/l) up to 56% of TS was present in solution; the temperature range is slightly outside the range recommended by the guideline (by 0.2°C).

Test condition
- Test organisms: 20 animals per vessel, average weight/length: 0.61 g/36.8 mm;
- renewal of test solution every 24 h, continuous agitation;
- dilution water: seawater, salinity 34.9-34.98°/oo; temperature: 14.6-16.2°C;
- dissolved oxygen: 7.2-8.0 mg/l; pH: 7.6-8.0, no solubilizing agent; seawater control

Reliability
- (3) invalid
- study well documented, but measured test substance concentration was < 20 % less than nominal.

Type
- Species: other: Chironomus riparius (Midge)

Exposure period
- 48 hour(s)

Unit
- mg/l

EC50
- = .36

Analytical monitoring
- no

Method
- other: acc. to EPA 660/3-75-009: Method for acute toxicity tests with fish, macroinvertebrates and amphibians (1975)

Year
- 1981

GLP
- no

Test substance
- other TS: 99%

Remark
- The presence of 1 g/l montmorillonite clay in the test vessels reduced the bioavailability of the TS: a five-fold greater nominal concentration was required to reach the 48 h-EC50 endpoint.

Result
- 95% confidence interval 48 h EC50: 0.25-0.52 mg/l

Test condition
- 10 test animals (4th-instar larvae); temperature: 22°C;
- solubilizing agent: acetone

Reliability
- (2) valid with restrictions
- study conducted acc. to national standard methods without detailed information on test conditions

Flag
- Critical study for SIDS endpoint

Type
- Species: Daphnia magna (Crustacea)

Exposure period
- 24 hour(s)

Unit
-

Method
- other: Daphnien-Schwimmunfaehigkeits-Test, UBA-Verfahrensvorschlag Mai 1984, Bestimmung der Schwimmunfaehigkeit beim Wasserfloh Daphnia magna, EC0, EC50, EC100 24h, statisches System

Year
- 1989

GLP
-

Test substance
-

Remark
- The low solubility of triphenyl phosphate in water and a poor distribution of the test substance determined heterogen (no dose related) results in the pretest.

Toxic effects have to be expected at TS concentrations < 10 mg/l (direct weight).

Reliability
- (4) not assignable
- Pretest raw data not available, but a statement why the acute toxicity test had not been realized.
Type: Other aquatic mollusc
Species: Pomacea canaliculata Lamarck (Golden apple snail)
Exposure period: 72 hour(s)
Unit: mg/l
LC50: 38.2
LC90: 83.5
Analytical monitoring: yes
Method: Other
Year: 2000
GLP: No data
Test substance: Other TS: 98%

Remark: No information whether LC50 value is based on nominal or measured concentration. Since 6 different concentrations (10-250 mg/l = all far above water solubility) had been tested, the use of a dissolving agent for the TPP test is assumed.

Test condition: snails 35-40 days old; 30 snails/glasse bottle; dilution water: pH 7.5, temperature: 26°C; 6 concentrations tested (10-250 mg/l), three replications

Reliability: (2) valid with restrictions

Flag: Critical study for SIDS endpoint

Type: Daphnia magna (Crustacea)
Exposure period: 48 hour(s)
Unit: mg/l
EC50: 1

Year: 1986

GLP:

Test substance:

Remark: diluting agent

Reliability: (4) not assignable

original reference not available

Type: Other: Chironomus tentans (midge)
Exposure period: 48 hour(s)
Unit: mg/l
LC50: = 1.6

Analytical monitoring: no

Method: Other

Year: 1986

GLP: no

Test substance: no data

Remark: No data available on actual concentrations tested.

Reliability: (4) not assignable

original reference not available

16.05.2002

(52)

15.05.2002

(61)

13.12.2001

(61)
4.3 TOXICITY TO AQUATIC PLANTS E.G. ALGAE

Species: Selenastrum capricornutum (Algae)

Endpoint: growth rate

Exposure period: 72 hour(s)

Unit: mg/l

NOEC: .25 - 2.5

LOEC: .5 - 5

Limit test: no

Analytical monitoring: no

Method: other: acc. to OECD guideline 201: Alga, growth inhibition test (1984); modified

Year: 1988

GLP: no data

Test substance: no data

Remark: The influence of varying growth medium compositions on the toxicity of a test substance was investigated.

The authors do not state NOEC values. Due to the only slight effect shown in the figures demonstrating the LOEC growth graphs compared to the control, derived NOECs are given for this test, using the procedure cited in the Technical Guidance Document by the EU for Risk Assessments. There, LOEC values of 10 to 20 % effect are halved to derive a NOEC (LOEC/2 = NOEC).

Result

- BBM-Medium: 72 h-LOEC = 0.5 mg/l
- OECD-Medium: 72 h-LOEC = 5 mg/l
- US-EPA-Medium: 72 h-LOEC = 1 mg/l

Growth medium composition does affect the toxic values obtained in standard algal toxicity tests. The observed effects, however, were neither consistent nor predictable.

Test condition

- Algal inoculum from actively growing axenic cultures (initial cell concentration: 10E4 cells/ml); algal growth media: Bolds basal medium (= BBM), OECD and EPA recommended media;
- TPP concentrations tested: 0.05, 0.1, 0.5, 1, and 5 mg/l;
- incubation at 22°C; constant illumination; solubilizing agent: acetone (< 100 µl/l); experiments carried out in triplicate

Reliability

(2) valid with restrictions

Test procedure acc. to standard guideline with acceptable modifications (pH of test media not stated)

Flag: Critical study for SIDS endpoint

29.07.2002

Species: Scenedesmus subspicatus (Algae)

Endpoint: growth

Exposure period: 72 hour(s)

Unit: mg/l

NOEC: .25 - 2.5

LOEC: .5 - 5

Limit test: no

Analytical monitoring: no

Method: other: acc. to OECD guideline 201: Alga, growth inhibition test (1984); modified

Year: 1988

GLP: no data

Test substance: no data

Remark: The influence of varying growth medium compositions on the
toxicity of a test substance was investigated.

The authors do not state NOEC values. Due to the only slight effect shown in the figures demonstrating the LOEC growth graphs compared to the control, derived NOECs are given for this test, using the procedure cited in the Technical Guidance Document by the EU for Risk Assessments. There, LOEC values of 10 to 20 % effect are halved to derive a NOEC (LOEC/2 = NOEC)

Result:
- BBM-Medium: 72 h-LOEC = 0.5 mg/l
- OECD-Medium: 72 h-LOEC = 5 mg/l
- US-EPA-Medium: 72 h-LOEC = 1 mg/l

Growth medium composition does affect the toxic values obtained in standard algal toxicity tests. The observed effects, however, were neither consistent nor predictable.

Test condition:
- Algal inoculum from actively growing axenic cultures (initial cell concentration: 10E4 cells/ml); algal growth media: Bolds basal medium (= BBM), OECD and EPA recommended media;
- TPP concentrations tested: 0.05, 0.1, 0.5, 1, and 5 mg/l;
- incubation at 22°C; constant illumination; solubilizing agent: acetone (<= 100 µl/l); experiments carried out in triplicate

Reliability:
- (2) valid with restrictions
- test procedure acc. to standard guideline with acceptable modifications (pH of test media not stated)

29.07.2002

Species: Chlorella vulgaris (Algae)
Endpoint: other: growth
Exposure period: 72 hour(s)
Unit: mg/l
NOEC: 2.5
LOEC: 5
Limit test: no
Analytical monitoring: no
Method: other: acc. to OECD guideline 201: Alga, growth inhibition test; modified
Year: 1988
GLP: no data
Test substance: no data

Remark:
The authors do not state NOEC values. Due to the only slight effect shown in the figures demonstrating the LOEC growth graphs compared to the control, derived NOECs are given for this test, using the procedure cited in the Technical Guidance Document by the EU for Risk Assessments. There, LOEC values of 10 to 20 % effect are halved to derive a NOEC (LOEC/2 = NOEC)

Result:
- Toxicity of TPP on C. vulgaris was not affected by the medium used:
 - BBM-Medium: 72 h-LOEC = 5 mg/l
 - OECD-Medium: 72 h-LOEC = 5 mg/l
 - US-EPA-Medium: 72 h-LOEC = 5 mg/l

Test condition:
- Algal inoculum from actively growing axenic cultures (initial cell concentration: 10E4 cells/ml); algal growth media: Bolds basal medium (= BBM), OECD and EPA recommended media;
- TPP concentrations tested: 0.05, 0.1, 0.5, 1, and 5 mg/l;
incubation at 22°C; constant illumination; solubilizing agent: acetone (<= 100 µl/l); experiments carried out in triplicate

Reliability
(2) valid with restrictions
test procedure acc. to standard guideline with acceptable modifications (pH of test media not stated)

Flag
29.07.2002
Critical study for SIDS endpoint

Species
Selenastrum capricornutum (Algae)

Endpoint
Exposure period : 96 hour(s)
Unit : mg/l
EC50 : 2
Limit test :
Analytical monitoring : no data
Year : 1981
GLP : no
Test substance : no data

Result
95% confidence interval 96h EC50: 0.6-4 mg/l

Test condition
static test system
(Reliability : (2) valid with restrictions
study conducted acc. to national standard methods without detailed documentation (pH of test medium not stated)

10.01.2002

Species
Ankistrodesmus falcatus (Algae)

Endpoint
other: reproduction (growth)

Exposure period
22 day(s)

Unit
mg/l

IC100
>= 1

Limit test :

Analytical monitoring :
no

Method :
other

Year :
1984

GLP :
no

Test substance :
no data

Result
At 0.05 and 0.1 mg/l reproduction of the alga was stimulated; at 0.5 mg/l reproduction was decreased in comparison to the control; concentrations >= 1 mg/l completely inhibited algal reproduction.

Test condition
reproduction was determined spectrophotometrically

Reliability
(2) valid with restrictions
study well documented, meets generally accepted scientific principles, without detailed documentation (pH of test medium not stated)

29.07.2002

Species
Ankistrodesmus falcatus (Algae)

Endpoint
other: primary productivity

Exposure period
4 hour(s)

Unit
mg/l

IC50
.26

Limit test :

Analytical monitoring :
no

Method :
other

Year :
1984

GLP :
no

Test substance :
no data
Remark

Primary productivity was measured by the amount of 14C-carbonate taken up by the algae over a 4 h period

Test condition

- inoculum: cells from logarithmic phase of growth; incubation at 20°C; pH 8; solubilizing agent: acetone; radioactivity was measured via LSC

Reliability

(2) valid with restrictions

- study well documented, meets generally accepted scientific principles, without detailed documentation (pH of test medium not stated)

15.05.2002

Species

- Scenedesmus quadricauda (Algae)

Endpoint

- other: primary productivity

Exposure period

- 4 hour(s)

Unit

- mg/l

IC50

- .5

Limit test

- no

Analytical monitoring

- no

Method

- other

Year

- 1984

GLP

- no

Test substance

- no data

Remark

Primary productivity was measured by the amount of 14C-carbonate taken up by algae over a 4 h period

Test condition

- inoculum: logarithmic phase of growth; pH 8; solubilizing agent: acetone; measurement of radioactivity via LSC

Reliability

(2) valid with restrictions

- study well documented, meets generally accepted scientific principles, without detailed documentation (pH of test medium not stated)

15.05.2002

Species

- other aquatic plant: Lake Ontario phytoplankton

Endpoint

- other: primary productivity

Exposure period

- 4 hour(s)

Unit

- mg/l

IC50

- .2

Limit test

- no

Analytical monitoring

- no

Method

- other

Year

- 1984

GLP

- no

Test substance

- no data

Remark

Primary productivity was measured by the amount of 14C-carbonate taken up by algae over a 4 h period

Reliability

(2) valid with restrictions

- study well documented, meets generally accepted scientific principles, without detailed documentation (pH of test medium not stated)

15.05.2002

Species

- Anabaena flos-aquae (Algae)

Endpoint

- other: nitrogenase activity

Exposure period

- 4 hour(s)

Unit

-

Limit test

- yes

Analytical monitoring

- yes: acetylene reduction technique acc. to Stratton & Corke (1979)

Method

- other: acetylene reduction technique acc. to Stratton & Corke (1979)

Year

- 1984

GLP

- no

Test substance

- no data
4.4 TOXICITY TO MICROORGANISMS E.G. BACTERIA

Result: Since the biodegradability of TPP showed a result of 83 - 94 % after 28 d of incubation with 30 mg/l sludge and 100 mg/l TPP in a test on ready biodegradability, there is no significant effect of TPP in the low concentration range expected.

Reliability: (2) valid with restrictions

Flag: Conclusion from guideline study on biodegradability

Type: aquatic
Species: activated sludge
Exposure period: 28 day(s)
Unit: mg/l
NOEC: 100

Result: Addition of 0.1, 1.0 and 5.0 mg/l reduced nitrogenase activity of A. flos-aquae to 84, 77 and 68%, respectively

Reliability: (2) valid with restrictions

Flag: Critical study for SIDS endpoint

Type: aquatic
Species: Escherichia coli (Bacteria)
Exposure period: 24 hour(s)
Unit: mg/l
EC0: 200
Method: other: Bestimmung der biologischen Schadwirkung toxischer Abwaesser gegen Bakterien. DEV, L 8 (1968) modifiziert
Year: 1978
GLP: Test substance:
Reliability: (4) not assignable

Type: aquatic
Species: Pseudomonas fluorescens (Bacteria)
Exposure period: 24 hour(s)
Unit: mg/l
EC0: 200
Method: other: Bestimmung der biologischen Schadwirkung toxischer Abwaesser gegen Bakterien. DEV, L 8 (1968) modifiziert
Year: 1978
GLP: Test substance:
Reliability: (4) not assignable

4.5.1 CHRONIC TOXICITY TO FISH

Species: other: Oncorhynchus mykiss, sac fry (formerly Salmo gairdneri)
Endpoint: other: weight and length of young fish
Exposure period: 30 day(s)
Unit: mg/l
NOEC: 0.037
LOEC: 0.055
Method: other: method used is based on US-EPA procedure "Methods for acute toxicity tests with fish, macroinvertebrates, and amphibians; EPA-660/3-75-009 (1975)
Year: 1978
GLP: no
Test substance: other TS: derived from Eastman Kodak Comp., no further information

Remark: This test started with 10 d old sac frys and lasted 30 days and is considered part of an Early Life Stage Test.

No NOEC was obtained with the triphenyl phosphate concentrations tested. With the raw data given in the test protocol, an EC10 of 0.037 mg/l can be calculated, equipollent to NOEC according to the Technical Guidance Document by the EU for Risk Assessments.

In a second test with the same conditions as described above, the test was started with 49 d old fingerlings and performed for another 30 days. The NOEC with the fingerlings concerning length and weight is given with 0.55 mg/l.

Test condition: Flow through test:
Test with sac-fry 10 days old, average weight 0.081 g, and average length: 22.3 mm.
Test with fingerling 45 days old, average weight 0.75 g, and average length: 41.2 mm.
30 fish per aquarium; temperature: 12°C; dilution water: oxygen saturated well water, pH 7.4/7.5, dissolved oxygen: 7.3-8.5 mg/l; hardness: 295/305 mg/l as CaCO₃, alkalinity: 255/260 mg/l as CaCO₃; pH 7.4/7.5; solubilizing agent: acetone (concentration not given); one aquarium served as control for solvent; the numbers of dead and moribund fish were recorded daily
TPP concentrations tested: 0.055, 0.090, 0.125, 0.16, 0.24, 0.31, 0.45 mg/l (nominal); highest concentration measured and used for estimation of the lower concentrations.

Reliability: (2) valid with restrictions
study design based on national standard method; detailed documentation
Flag: 02.08.2002
Critical study for SIDS endpoint (66)

Species: other: Oncorhynchus mykiss, sac-fry
Endpoint: other: eye cataract, vertebral collagen amount, survival, growth
Exposure period: 90 day(s)
Unit: mg/l
NOEC: >= .0014
Analytical monitoring: yes
Method:
Year: 1981
GLP: no
Test substance: no data

Result: There was no effect concerning the endpoints eye cataract, vertebral collagen amount, growth, or survival with the highest TPP concentration tested. The highest measured TPP concentration in the flow through system was 0.0014 mg/l.

Test condition: flow-through system; rainbow trout sac fry; seven concentrations tested, dilution factor: 0.75; water characteristics: well water, hardness 272 mg/l, alkalinity 237 mg/l, pH 7.2, temperature: 12°C; solvent concentration < 0.05 ml/l;
solvent control
mortality was recorded daily; fish were weighed and measured (total
length) after 15, 30, 45, 60, and 90 days of exposure

Reliability
: (2) valid with restrictions
study well documented, meets generally accepted scientific principles

Flag
02.08.2002
: Critical study for SIDS endpoint

Species
: Pimephales promelas (Fish, fresh water)
Endpoint
: other: hatchability, eye cataract, growth, and survival
Exposure period
: 30 day(s)
Unit
: mg/l
NOEC
: .087
LOEC
: .23
Analytical monitoring
: yes
Method

Year 1981
: GLP no
Test substance
: no data

Result
: With the highest TPP concentration of 0.23 mg/l (measured conc.) survival
of fry was significantly reduced. No effects on egg hachability, eyes, or
growth were noted with TPP concentrations 0.0028 to 0.23 mg/l.

Test condition
: eggs and fry of fathead minnow were exposed to TPP in a
flow-through diluter system; concentration measured analytically;
water characteristics: well water, hardness 272 mg/l, alkalinity 237 mg/l, pH
7.2, temperature: 12°C; solvent concentration < 0.05 ml/l;

Reliability
: (2) valid with restrictions
study conducted acc. to national standard methods without
detailed documentation

Flag
02.08.2002
: Critical study for SIDS endpoint

Species
: other: Oncorhynchus mykiss, sac fry (formerly Salmo gairdneri)
Endpoint
: other: lethal concentration
Exposure period
: 4 day(s)
Unit
: mg/l
LC50
: .31
Analytical monitoring
: no
Method
: other: method used is based on US-EPA procedure 'Methods for acute
toxicity tests with fish, macroinvertebrates, and amphibians; EPA-660/3-75-
009 (1975)

Year 1978
: GLP no
Test substance
: other TS: derived from US-FDA, no further information

Remark
: Though test duration was only 96 hours, this test with juveniles of rainbow
tROUT is considered part of an Early Life Stage Test.

Test condition
: Static test:
10 rainbow trout sac frys, 10 days old per jar, not fed during exposure;
temperature: 12°C; dilution water:
reconstituted soft water, pH 7.0-7.2, hardness: 40-48 mg/l
as CaCO3, alkalinity: 32-38 mg/l as CaCO3; solubilizing
agent: acetone (concentration not given); one aquarium
served as control for solvent; the numbers of dead and moribund (loss of
equilibrium) fish were recorded daily

TPP concentrations tested with sac fry:
0.18, 0.24, 0.32, 0.42, 0.56, 1.0 mg/l (nominal);

Reliability
: (2) valid with restrictions
study design based on national standard method; detailed documentation
<table>
<thead>
<tr>
<th>Species</th>
<th>other: Oncorhynchus mykiss, fingerling (formerly Salmo gairdneri)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Endpoint</td>
<td>other: lethal concentration</td>
</tr>
<tr>
<td>Exposure period</td>
<td>4 day(s)</td>
</tr>
<tr>
<td>Unit</td>
<td>mg/l</td>
</tr>
<tr>
<td>LC50</td>
<td>.32</td>
</tr>
<tr>
<td>Analytical monitoring</td>
<td>no</td>
</tr>
<tr>
<td>Method</td>
<td>other: method used is based on US-EPA procedure ‘Methods for acute toxicity tests with fish, macroinvertebrates, and amphibians; EPA-660/3-75-009 (1975)</td>
</tr>
<tr>
<td>Year</td>
<td>1978</td>
</tr>
<tr>
<td>GLP</td>
<td>no</td>
</tr>
<tr>
<td>Test substance</td>
<td>other TS: derived from Eastman Kodak Comp., no further information</td>
</tr>
</tbody>
</table>

Test condition

Static test:
- 10 rainbow trout fingerlings 49 days old per jar, not fed during exposure;
- Temperature: 12°C;
- Dilution water: reconstituted soft water, pH 7.0-7.2, hardness: 40-48 mg/l as CaCO3, alkalinity: 32-38 mg/l as CaCO3; solubilizing agent: acetone (concentration not given); one aquarium served as control for solvent; the numbers of dead and moribund (loss of equilibrium) fish were recorded daily.

TPP concentrations tested with fingerlings: 0.055, 0.090, 0.125, 0.16, 0.24, 0.31, 0.45 mg/l (nominal);

Reliability

(2) valid with restrictions
- Study design based on national standard method; detailed documentation

4.5.2 CHRONIC TOXICITY TO AQUATIC INVERTEBRATES

4.6.1 TOXICITY TO SEDIMENT DWELLING ORGANISMS

4.6.2 TOXICITY TO TERRESTRIAL PLANTS

4.6.3 TOXICITY TO SOIL DWELLING ORGANISMS

4.6.4 TOX. TO OTHER NON MAMM. TERR. SPECIES

<table>
<thead>
<tr>
<th>Species</th>
<th>other: insects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Endpoint</td>
<td>mortality</td>
</tr>
<tr>
<td>Exposure period</td>
<td></td>
</tr>
<tr>
<td>Unit</td>
<td></td>
</tr>
<tr>
<td>Method</td>
<td>other: acc. to Busvine (1962)</td>
</tr>
<tr>
<td>Year</td>
<td>1967</td>
</tr>
<tr>
<td>GLP</td>
<td>no</td>
</tr>
<tr>
<td>Test substance</td>
<td>no data</td>
</tr>
</tbody>
</table>

Remark

no information given whether a control with the solubilizing agent was performed
4. ECOTOXICITY

Result
Musca domestica:
NOEC=4.3 µg/fly (normal strain);
NOEC=9.5 µg/fly (malathion resistant strain)

Chrysomya putoria:
NOEC= 1.5 µg/fly (normal strain);
NOEC= 3.05 µg/fly (malathion resistant strain)

Test condition
20 flies were used; TPP was dissolved in dioctyl phthalate and applied to the insects by topically; tests conducted in duplicate

Reliability
(3) invalid
documentation insufficient

4.7 BIOLOGICAL EFFECTS MONITORING

Memo
Outdoor experimental stream including two pools and 50 m total length at National Fisheries Contaminant Research Center.

Result
Monitoring of
Nutrient dynamics: no effect
Leaf decomposition: no effect
Benthic algal dynamics: no effect
Benthic invertebrates:
number, diversity: no effect
Insect emerge: no effect
Benthic organisms, drift: effect, immediately starting when soil with TPP conc. >= 400 mg/kg were added, thereafter sedation

Fish: no mortality in caged bluegills exposed for 96 h each week. After the treatments at 400, 800, and 1600 mg/kg, bluegills were visually examined and x-rayed for vertebral abnormalities known to occur after laboratory exposure to some arylphosphates. The findings of Mayer et al. 1981 were affirmed (see chapt. 4.5.1), no such sublethal effects were detected with TPP.

Test condition
Water used: Well water,
pH at inlet and outlet: 7.31 - 8.04
Sediment used: locally topsoil, 0.70 % organic C, 5 % sand, 77 % silt, 18 % clay.

Application of TTP to stream: Spraying of acetone solubilized TTP on soil. 24 h adsorption time and volatilization of aceton. Sediment added to the stream was treated each week for 6 weeks with increasing amounts of TPP, beginning at 50 mg/kg and doubled each week to a height of 1600 mg/kg. Treated soil was flushed into the circulation water once a week.

For single measured test substance concentrations see chapter 3.1.2 (Stability in Water) Fairchild et al. 1987.

Reliability
(2) valid with restrictions
study well documented, meets generally accepted scientific principles

Flag
02.08.2002

Critical study for SIDS endpoint

4.8 BIOTRANSFORMATION AND KINETICS

4.9 ADDITIONAL REMARKS
5.0 TOXICOKINETICS, METABOLISM AND DISTRIBUTION

<table>
<thead>
<tr>
<th>In Vitro/in vivo</th>
<th>In vitro</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>Metabolism</td>
</tr>
<tr>
<td>Species</td>
<td></td>
</tr>
<tr>
<td>Number of animals</td>
<td></td>
</tr>
<tr>
<td>Males</td>
<td></td>
</tr>
<tr>
<td>Females</td>
<td></td>
</tr>
<tr>
<td>Doses</td>
<td></td>
</tr>
<tr>
<td>Males</td>
<td></td>
</tr>
<tr>
<td>Females</td>
<td></td>
</tr>
<tr>
<td>Vehicle</td>
<td></td>
</tr>
<tr>
<td>Method</td>
<td>other:</td>
</tr>
<tr>
<td>Year</td>
<td></td>
</tr>
<tr>
<td>GLP</td>
<td></td>
</tr>
<tr>
<td>Test substance</td>
<td></td>
</tr>
<tr>
<td>Method</td>
<td>Test System: liver homogenates (male Wistar rat)</td>
</tr>
</tbody>
</table>

Control: Yes, concurrent

Method: Rat livers were removed and the microsomal and soluble fractions extracted. An ethanol solution of TPP at 0.0004 M was used as substrate to determine the extent of decomposition by the fractions with and without NADPH and other enzyme systems. Major metabolites resulting from TPP degradation were characterized using gas chromatography.

Result: TPP was easily decomposed by the microsomal fraction without NADPH. Therefore arylesterase in the microsomes contributes to TPP metabolism. The metabolic reactions were inhibited almost completely by SKF-525A and carbon monoxide in the absence of NADPH whereas KCN, NaN3, dipyridyl and EDTA showed little effect. Therefore mixed function oxidase system in the microsomes plays a central role in the metabolism of TPP. Diphenyl phosphate (DPP) was the only major metabolite of TPP, and DPP was not decomposed by the microsomes.

Conclusion: TPP is degraded by hydrolysis in rat liver homogenate to diphenyl phosphate as the major product.

Reliability: (2) valid with restrictions
Flag: Critical study for SIDS endpoint

09.05.2005

5.1.1 ACUTE ORAL TOXICITY

<table>
<thead>
<tr>
<th>Type</th>
<th>LD50</th>
</tr>
</thead>
<tbody>
<tr>
<td>Value</td>
<td>> 20000 mg/kg bw</td>
</tr>
<tr>
<td>Species</td>
<td>rat</td>
</tr>
<tr>
<td>Strain</td>
<td>Wistar</td>
</tr>
<tr>
<td>Sex</td>
<td>male/female</td>
</tr>
<tr>
<td>Number of animals</td>
<td>10</td>
</tr>
<tr>
<td>Vehicle</td>
<td>water</td>
</tr>
<tr>
<td>Doses</td>
<td>20000 mg/kg</td>
</tr>
<tr>
<td>Method</td>
<td></td>
</tr>
<tr>
<td>Year</td>
<td>1975</td>
</tr>
<tr>
<td>GLP</td>
<td>no data</td>
</tr>
<tr>
<td>Test substance</td>
<td>no data</td>
</tr>
</tbody>
</table>

Method: observation for 14 days after dosage
PARAMETER: mortality, necropsy

Result:
 MORTALITY: none
 NECROPSY: sporadic visceral hemorrhage

Reliability:
 (2) valid with restrictions
 SHORT REPORT, main features of study design given

Flag:
 05.09.2005
 Critical study for SIDS endpoint

Type: LD50
Value: > 5000 mg/kg bw
Species: rat
Strain: no data
Sex: male/female

Number of animals: 10
Vehicle: other: 20% emulsion with gum arabic
Doses: 2500-5000 mg/kg
Method: other: 20% emulsion with gum arabic
Year: 1954
GLP: no
Test substance: no data

Method:
 NUMBER: 5 rats/dose
 OBSERVATION: 8 days
 PARAMETERS: mortality, clin. symptoms

Result:
 MORTALITY: none
 SYMPTOMS: none

Reliability:
 (2) valid with restrictions
 short report, main features of study design given

Flag:
 04.07.2002
 Critical study for SIDS endpoint

Type: LD50
Value: > 6400 mg/kg bw
Species: rat
Strain: no data
Sex: no data

Number of animals: 10
Vehicle: no data
Doses: no data
Method: other: no data
Year: 1962
GLP: no data
Test substance: no data

Reliability:
 (4) not assignable
 LD 50 only, no details

Flag:
 01.07.2002
 Critical study for SIDS endpoint

Type: LD50
Value: 3800 mg/kg bw
Species: rat
Strain: no data
Sex: no data

Number of animals: 10
Vehicle: no data
Doses: 500 to 5000 mg/kg
Method: other: no data
Year: 1974
GLP: no data
Test substance: no data
OECD SIDS TRIPHENYL PHOSPHATE
5. TOXICITY
ID: 115-86-6
DATE: 20.08.2002

Method: PARAMETERS: observation (at least 5 days), mortality, necropsy, clin. symptoms.

Result: CLIN. SYMPTOMS: reduced mobility, untidiness, weakness
MORTALITY: 4-5 days post dose
NECROPSY: edema and hyperemia in the gut wall, tough-like consistency of liver and kidneys (autolysis?), congestion in meninges

Reliability: (4) not assignable
abstract only, no details of study design

Flag: Critical study for SIDS endpoint
10.07.2002

Type: LD50
Value: = 3500 mg/kg bw
Species: rat
Strain: no data
Sex: no data
Number of animals: no data
Vehicle: other: olive oil (25%)
Doses: no data
Method: TPP was administered as a 25% solution in olive oil and rats were observed for 6 days for signs of toxicity. Average calculated from 143 experiments.

Result: OBSERVATION:
Signs of toxicity appeared after 6-8 hours and included tremor, reduced food intake, diarrhea in all animals. Impaired coordination was recorded above a dose of 3000 mg/kg
MORTALITY: death occurred within 6 days

Reliability: (3) invalid
doze range and number of animals not given
no test substance data; early study

04.07.2002

Type: LD50
Value: = 10800 mg/kg bw
Species: rat
Strain: Sprague-Dawley
Sex: male/female
Number of animals: no data
Vehicle: other: undiluted or in corn oil
Doses: no data
Method: Maximum dosage was 15.8 g/kg.
OBSERVATION: 14 days postdose.
PARAMETERS: observation, mortality
The LD50 was calculated according to De Beer (1945)

Test substance: “prepared from pure phenol”
Reliability: (2) valid with restrictions
Number of animals not stated; only few details described

Flag: Critical study for SIDS endpoint
22.07.2002

(72) (73)
(74)
(75)
Type : LDLo
Value : > 3000 mg/kg bw
Species : rat
Strain : other: Holtzman
Sex : male
Number of animals : 11
Vehicle : no data
Doses : 3000 mg/kg
Method : no data
Year : 1960
GLP : no data
Test substance :

Method : NUMBER OF ANIMALS: 11
PARAMETERS: mortality, observation (1 month), necropsy
Result : MORTALITY: 1/11
CLIN: SIGNS: only in the rat that died for an unspecified non-treatment-related reason
NECROPSY: no data
Test substance : eastman organic chemicals "practical grade"
Reliability : (2) valid with restrictions
vehicle for the oral treatment not clearly stated
few details reported
Flag : Critical study for SIDS endpoint
10.07.2002 (76)

Type : LD50
Value : > 5000 mg/kg bw
Species : mouse
Strain : no data
Sex : male/female
Number of animals : 10
Vehicle : other: gum arabic
Doses : 2500-5000 mg/kg
Method : other: 5 mice/ group were observed for 8 days
Year : 1954
GLP : no data
Test substance :

Method : PREPARATION: 20% in aqueous gum arabic
NUMBER OF ANIMALS: 5/group
PARAMETERS: observation, mortality
Result : OBSERVATION: slight stupor
MORTALITY: none
Reliability : (2) valid with restrictions
short report; few details reported
Flag : Critical study for SIDS endpoint
10.07.2002 (70)

Type : LD50
Value : = 1320 mg/kg bw
Species : mouse
Strain : no data
Sex : no data
Number of animals :
Vehicle : other: oil (not specified)
Doses : 500-5000 mg/kg
Method :
Year : 1974
GLP : no data
Test substance: no data

Result
- **OBSERVATION**: weakness, reduced motility, untidiness,
- **MORTALITY**: no data
- **NECROPSY**: findings in deceased animals: dilation of digestive tract, edema and hyperemia of gut, tough-like consistency of liver and kidneys, congestion of meninges with focal hemorrhages

Reliability: (4) not assignable

Flag
- 04.07.2002: Critical study for SIDS endpoint
- 22.07.2002: Critical study for SIDS endpoint

<table>
<thead>
<tr>
<th>Type</th>
<th>LD0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Value</td>
<td>> 3000 mg/kg bw</td>
</tr>
<tr>
<td>Species</td>
<td>mouse</td>
</tr>
<tr>
<td>Strain</td>
<td>other: CF1</td>
</tr>
<tr>
<td>Sex</td>
<td>male</td>
</tr>
<tr>
<td>Number of animals</td>
<td>10</td>
</tr>
<tr>
<td>Vehicle</td>
<td>no data</td>
</tr>
<tr>
<td>Doses</td>
<td>3000 mg/kg</td>
</tr>
<tr>
<td>Method</td>
<td></td>
</tr>
<tr>
<td>Year</td>
<td>1960</td>
</tr>
<tr>
<td>GLP</td>
<td>no data</td>
</tr>
<tr>
<td>Test substance</td>
<td>eastman organic chemicals "practical grade"</td>
</tr>
</tbody>
</table>

Remark
- It is not clear whether the results were obtained in one or several studies and how the test conditions differed/ were similar
- The postulated correlation between TPP exposure and ChE inhibition is not proven

Result
- No deaths occurred at this dosage level.
- The activity of cholinesterase in plasma was reduced in a dose dependent manner:
 - 10 to 50 mg/kg: 87-88% activity
 - 100 mg/kg: 60.7%
 - 200 mg/kg: 53.9%
 - 500 mg/kg: 30.4%

Test substance: crystalline technical product, recrystallized twice, final product with sharp melting point, though lower than before recrystalization.
Reliability: (4) not assignable
Scarce information on study design

Flag: Critical study for SIDS endpoint

Type: LDLo
Value: < 400 mg/kg bw
Species: cat
Strain:
Sex: no data
Number of animals: 10
Vehicle: other: olive oil
Doses:
Method: other
Year: 1957
GLP: no data
Test substance: no data

Method: Three cats were administered 2000 mg/kg TPP once and observed for 6 days postdose.

4 other animals received either 200, 300, 500 or 800 mg/kg twice on 2 days. A 3rd group received 500 and 1000 mg/kg by gavage in oil solution. All of these animals died. Necropsy did not show any alterations. Histology of liver kidneys, adrenal glands and nervous tissue showed signs of toxicity in these organs.

No further details

Remark: The LDLo is 2x 200 mg/kg/day

Result: Clinical signs: diarrhea, salivation, tremor, hyperreflexia in hind extremities, apathy. Recovery of survivors in 9 days.
Mortality: Two of the three cat of the high dose (2000mg/kg) died during observation period. All cats treated twice died.

Histopathology:
corrosion in GI tract, signs of acute intoxication in liver, kidneys and adrenal glands
slight changes in ganglial cell and the myelin sheeth of peripheral nerves (no details reported)

Reliability: (3) invalid
No test substance data, single animals per dose, no details of study design, conflicting results (1 cat survived 2000 mg/kg, while 2x200 mg/kg was lethal)
early study

Type: LD0
Value: > 4000 mg/kg bw
Species: guinea pig
Strain: no data
Sex: male
Number of animals: 10
Vehicle: no data
Doses: 3000-4000 mg/kg
Method:
Year: 1960
GLP: no data
Test substance:

Method: 2 groups of 5 guinea pigs were administered TPP orally (3g/kg; 4g/kg) and
examined for signs of toxicity for one month.

<table>
<thead>
<tr>
<th>Result</th>
<th>OBSERVATION: 1 month, no clinical signs observed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test substance</td>
<td>"practical grade" Eastman Organic Chemicals</td>
</tr>
<tr>
<td>Reliability</td>
<td>(2) valid with restrictions</td>
</tr>
<tr>
<td>Flag</td>
<td>Critical study for SIDS endpoint</td>
</tr>
<tr>
<td>22.07.2002</td>
<td></td>
</tr>
</tbody>
</table>

Type: LD50
Value: > 2000 mg/kg bw
Species: hen
Strain: no data
Sex: no data
Number of animals:
Vehicle: no data
Method:
Year: 1962
GLP: no data
Test substance: no data

Remark: LD 50 only; cited from: Industrial Hygiene and Toxicology, Vol:2; Toxicology, 2nd edition Intersience, N.Y. 1962
Reliability: (4) not assignable
Flag: Critical study for SIDS endpoint
| 04.07.2002 | |

Type: LD0
Value: > 2000 mg/kg bw
Species: hen
Strain: no data
Sex: no data
Number of animals: 4
Vehicle: no data
Doses: 500-2000 mg/kg
Method:
Year: 1932
GLP: no data
Test substance:

Remark:
Reliability: (4) not assignable
Flag: Critical study for SIDS endpoint
| 08.10.2002 | |

Type: LD0
Value: > 5000 mg/kg bw
Species: hen
Strain: no data
Sex: no data
Number of animals:
Vehicle: other: gelatine capsule
Doses: 5000 mg/kg
Method:

Remark:
Reliability: (4) not assignable
Flag: Critical study for SIDS endpoint
| 08.10.2002 | |
5. TOXICITY

OECD SIDS

TRIPHENYL PHOSPHATE

ID: 115-86-6

DATE: 20.08.2002

<table>
<thead>
<tr>
<th>Year</th>
<th>1977</th>
</tr>
</thead>
<tbody>
<tr>
<td>GLP</td>
<td>no data</td>
</tr>
<tr>
<td>Test substance</td>
<td>hens (White Leghorn) were treated with 5g/kg of TPP in gelatine capsules and observed for 14 days; no further detail</td>
</tr>
</tbody>
</table>

Result

No signs of toxicity were observed during the 14 days postdose.

Test substance

TPP was "prepared from pure phenol"

Reliability

(2) valid with restrictions only few details given

Flag

Critical study for SIDS endpoint

10.07.2002 (75)

Type

other

Value

> 10000 mg/kg bw

Species

gen

Strain

no data

Sex

no data

Number of animals

2

Vehicle

other: olive oil (1:4), in gelatine capsule

Doses

Method

Number of animals: 2

Treatment: 30 g/kg TPP were administered to hens over several days and they were observed for signs of neurotoxicity for up to 3 weeks.

Parameters: clin. signs, mortality

Result

Observation: no symptoms

Mortality: none

Reliability

(2) valid with restrictions few details, no clear description of treatment

Flag

Critical study for SIDS endpoint

10.07.2002 (78)

Type

other

Value

> 500 mg/kg bw

Species

gen

Strain

no data

Sex

no data

Number of animals

4

Vehicle

other: arachis oil

Doses

500 mg/kg

Method

Four hens were administered TPP by mouth one time at a dosage of 500 mg/kg and observed for at least 21 days for signs of neurotoxicity.

Parameters: observation, cholin esterase activity

Result

Observation: No signs of neurotoxicology were observed, during the 21 day observation period.

Cholie esterase activity: inhibition of 60% (4 hens) after 24 hrs; in every case activity had returned to normal levels within 4 days

Reliability

(2) valid with restrictions only few details of study design given
<table>
<thead>
<tr>
<th>Flag</th>
<th>Critical study for SIDS endpoint</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.07.2002</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Type</th>
<th>other</th>
</tr>
</thead>
<tbody>
<tr>
<td>Value</td>
<td>> 1000 mg/kg bw</td>
</tr>
<tr>
<td>Species</td>
<td>hen</td>
</tr>
<tr>
<td>Strain</td>
<td>other: White Leghorn</td>
</tr>
<tr>
<td>Sex</td>
<td>male</td>
</tr>
<tr>
<td>Number of animals</td>
<td>2</td>
</tr>
<tr>
<td>Vehicle</td>
<td>other: undiluted</td>
</tr>
<tr>
<td>Doses</td>
<td>1000 mg/kg</td>
</tr>
<tr>
<td>Method</td>
<td></td>
</tr>
<tr>
<td>Year</td>
<td>1956</td>
</tr>
<tr>
<td>GLP</td>
<td>no</td>
</tr>
<tr>
<td>Test substance</td>
<td></td>
</tr>
</tbody>
</table>

Method

PARAMETERS: Observation, histology (brain, cord, sciatic nerve) acetyl cholinesterase (24 h)

Result

No signs of neurotoxicity developed in either cockerel. Choline esterase was depressed to 49% in plasma at 24 h. No effects in brain and slight effect in cord tissue. There was no histologic evidence of degeneration in the brain, cord, or sciatic nerves.

No further data

Test substance

the compounds were of 98% purity or greater

Reliability

(2) valid with restrictions

few details given; early study aiming at neurotoxicity not acute toxicity

<table>
<thead>
<tr>
<th>Flag</th>
<th>Critical study for SIDS endpoint</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.07.2002</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Type</th>
<th>other</th>
</tr>
</thead>
<tbody>
<tr>
<td>Value</td>
<td>> 12000 mg/kg bw</td>
</tr>
<tr>
<td>Species</td>
<td>hen</td>
</tr>
<tr>
<td>Strain</td>
<td>other: Rhode Island Red x Light Sussex</td>
</tr>
<tr>
<td>Sex</td>
<td>female</td>
</tr>
<tr>
<td>Number of animals</td>
<td>2</td>
</tr>
<tr>
<td>Vehicle</td>
<td>other: arachis oil (25 ml/kg)</td>
</tr>
<tr>
<td>Doses</td>
<td>12000 mg/kg</td>
</tr>
<tr>
<td>Method</td>
<td></td>
</tr>
<tr>
<td>Year</td>
<td>1981</td>
</tr>
<tr>
<td>GLP</td>
<td></td>
</tr>
<tr>
<td>Test substance</td>
<td></td>
</tr>
</tbody>
</table>

Method

PARAMETERS: Observation for 21 days, necropsy

Result

Observation: no signs of neurotoxicity

Necropsy: no findings

Reliability

(2) valid with restrictions

full report, low animal number (2)

<table>
<thead>
<tr>
<th>Flag</th>
<th>Critical study for SIDS endpoint</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.07.2002</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Type</th>
<th>other: delayed neurotoxicity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Value</td>
<td>> 12500 mg/kg bw</td>
</tr>
<tr>
<td>Species</td>
<td>hen</td>
</tr>
<tr>
<td>Strain</td>
<td>other: Rhode Island Red x Light Sussex</td>
</tr>
<tr>
<td>Sex</td>
<td>female</td>
</tr>
<tr>
<td>Number of animals</td>
<td>10</td>
</tr>
<tr>
<td>Vehicle</td>
<td>other: arachis oil</td>
</tr>
<tr>
<td>Doses</td>
<td>2000-3000-5000-8000-12500 mg/kg</td>
</tr>
</tbody>
</table>
Method: Five groups of two hens each were administered a single dose of triphenyl phosphate by gavage at dosage levels of 2, 3, 5, 8, 12.5 g/kg in arachis oil and observed for signs of neurotoxicity for 21 days. To attain the dosage levels listed above, different concentrations of the mixture had to be used.

Parameters: Observation (21 days), necropsy

Result: There were no signs of toxicity observed either in-life or at necropsy in any hens on study.

The NOEL was 12,500 mg/kg.

Reliability: (2) valid with restrictions

Flag: Critical study for SIDS endpoint

5.1.2 ACUTE INHALATION TOXICITY

Type: LC50
Value: > 200 mg/l
Species: rat
Strain: male/female
Number of animals: 10
Vehicle: no data
Doses: Exposure time: 1 hour(s)
Method: dust inhalation according to 16 CFR 1500.3
DURATION: 1 hour
PARAMETERS: observation (14 days), mortality
Remark: no further details
Result: MORTALITY: none
OBSERVATION: no symptoms
Reliability: (4) not assignable

04.07.2002

Type: other: Choline esterase determination
Value:
Species: mouse
Strain:
Sex:
Number of animals:
Vehicle:
Doses: Exposure time:
Method: 2 Doses, 3 exposure periods: (363 (6h); 757 mg/m3 (2h and 4 h))
Result: None of the animals exhibited any colinergic signs or symptoms.
No significant effects at 363 mg/m3(6h) and 757 mg/m3(4 h)
significant effect at 757 mg/m³ (2h) but with questionable biological relevance

Reliability
(3) invalid
inconsistent results (high dose: effect after 2 hours but not after 4 hour of exposure)
No results other than ChE inhibition reported (as "delta pH")

08.10.2002

5.1.3 ACUTE DERMAL TOXICITY

<table>
<thead>
<tr>
<th>Type</th>
<th>LD50</th>
</tr>
</thead>
<tbody>
<tr>
<td>Value</td>
<td>> 10000 mg/kg bw</td>
</tr>
<tr>
<td>Species</td>
<td>rabbit</td>
</tr>
<tr>
<td>Strain</td>
<td>no data</td>
</tr>
<tr>
<td>Sex</td>
<td>no data</td>
</tr>
<tr>
<td>Number of animals</td>
<td>10</td>
</tr>
<tr>
<td>Vehicle</td>
<td>no data</td>
</tr>
<tr>
<td>Doses</td>
<td>10000 mg/kg</td>
</tr>
<tr>
<td>Method</td>
<td>other: as described in 16 CFR 1500.40</td>
</tr>
<tr>
<td>Year</td>
<td>1976</td>
</tr>
<tr>
<td>GLP</td>
<td>no data</td>
</tr>
<tr>
<td>Test substance</td>
<td>no data</td>
</tr>
</tbody>
</table>

Method: 2 groups of 5 rabbits; treatment on intact or abraded skin
PARAMETERS: mortality

Result: MORTALITY: none
Reliability: (2) valid with restrictions
Short report, few details
Flag: Critical study for SIDS endpoint

05.09.2005

<table>
<thead>
<tr>
<th>Type</th>
<th>LDLo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Value</td>
<td>> 7900 mg/kg bw</td>
</tr>
<tr>
<td>Species</td>
<td>rabbit</td>
</tr>
<tr>
<td>Strain</td>
<td>New Zealand white</td>
</tr>
<tr>
<td>Sex</td>
<td>male/female</td>
</tr>
<tr>
<td>Number of animals</td>
<td></td>
</tr>
<tr>
<td>Vehicle</td>
<td>other: undiluted</td>
</tr>
<tr>
<td>Doses</td>
<td></td>
</tr>
<tr>
<td>Method</td>
<td></td>
</tr>
<tr>
<td>Year</td>
<td>1977</td>
</tr>
<tr>
<td>GLP</td>
<td>no data</td>
</tr>
<tr>
<td>Test substance</td>
<td>no data</td>
</tr>
</tbody>
</table>

Method: rabbits were administered TPP on the skin of the back for 24 hours under an occlusive patch. Residues were washed off. Rabbits were observed for 14 days postdose.
PARAMETERS: mortality, observation, necropsy

Remark: no further details
Result: MORTALITY: no data
OBSERVATION: no data
NECROPSY: no data
Reliability: (2) valid with restrictions
number of animals and dose range not stated, no other findings reported
Flag: Critical study for SIDS endpoint

08.10.2002
5.1.4 ACUTE TOXICITY, OTHER ROUTES

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>LD50</td>
</tr>
<tr>
<td>Value</td>
<td>= 6900 mg/kg bw</td>
</tr>
<tr>
<td>Species</td>
<td>mouse</td>
</tr>
<tr>
<td>Strain</td>
<td>CD-1</td>
</tr>
<tr>
<td>Sex</td>
<td>male/female</td>
</tr>
<tr>
<td>Number of animals</td>
<td>70</td>
</tr>
<tr>
<td>Vehicle</td>
<td>other: DMSO</td>
</tr>
<tr>
<td>Doses</td>
<td>4500-5000-6000-7000-8000 mg/kg</td>
</tr>
<tr>
<td>Route of admin.</td>
<td>i.p.</td>
</tr>
<tr>
<td>Exposure time</td>
<td></td>
</tr>
<tr>
<td>Method</td>
<td></td>
</tr>
<tr>
<td>Year</td>
<td>1989</td>
</tr>
<tr>
<td>GLP</td>
<td></td>
</tr>
<tr>
<td>Test substance</td>
<td></td>
</tr>
</tbody>
</table>

Method: PARAMETERS: observation, body weights, mortality, necropsy

Result:

MORTALITY:
males (dose in mg/kg: x/n)
4500 : 2/5
5000 : 2/10
6000 : 1/5
7000 : 5/5
8000 : 3/5

females (dose in mg/kg: x/n)
4500 : 2/5
5000 : 4/10
6000 : 1/5
7000 : 1/5
8000 : 3/5

OBSERVATION: unkempt appearance, soft stool, hypoactivity, yellow staining of the perineum and sunken sides while walking. All surviving mice gained or maintained weight during the study.

NECROPSY: findings were limited to 1 mouse with red, friable small intestines and hard white material in the abdominal cavities of many of the TPPA treated mice. This white material is presumed to be undissolved TPPA accompanied by inflammatory reaction.

Reliability: (2) valid with restrictions
full report available; missing data on test material

04.07.2002 (84)

Type: LD0
Value: > 5000 mg/kg bw
Species: rat
Strain: Sprague-Dawley
Sex: male/female
Number of animals: 20
Vehicle: other: DMSO
Doses: 5000 mg/kg
Route of admin.: i.p.
Exposure time:
Method: according to Fifra guidelines (40 CFR 158.81-1)
Year: 1989
GLP: yes
Test substance: no data

Method: The main study contained 5 male and 5 female rats per group
A DMSO-control was also used.

PARAMETERS: observation (14 days), body weights (before dosing and weekly thereafter), mortality, necropsy

Result

Though deaths occurred in the range finding study, these were attributed to the ethanol vehicle used at that stage and were not related to TPP.

In the limit test no mortality occurred in any group.

Clinical signs included unkempt appearance, bloated abdomen and wet perineum in TPP treated rats. No adverse signs were noted in the control group. All rats gained weight.

Necropsy findings were limited to hard white material in the abdominal cavities of TPP treated rats, regarded as undisolved TPP

Reliability

(2) valid with restrictions
full report available; missing data on test material

04.07.2002

Type : LD0
Value : = 200 mg/kg bw
Species : rabbit
Strain : no data
Sex : no data
Number of animals : no data
Vehicle : no data
Doses :
Route of admin. : i.p.
Exposure time :
Method : other: Rabbits were administered 200 mg/kg TPP intraperitoneally and examined for signs of toxicity. No details reported.

Year : 1943
GLP : no
Test substance : no data

Method : no data
Result : No deaths nor paralysis.
Reliability : (3) invalid
original not available; number of animals not stated;

10.07.2002

Type : other:TDlo
Value : 200 mg/kg bw
Species : cat
Strain : no data
Sex : female
Number of animals : 6
Vehicle : other: 70 % W/V in 95 % v/v aq. ethanol
Doses :
Route of admin. : i.p.
Exposure time :
Method :
Year : 1960
GLP : no data
Test substance :

Method : PARAMETERS: observation (up to 50 days), mortality, necropsy
Result : The cat receiving 100 mg/kg, and one of the cats receiving 300 mg/kg showed no signs of any kind for 30 days postdose.

The other cat receiving 300 mg/kg was found dead on day 3, due probably to a perforated ulcer unrelated to TPP administration.
The cat receiving 400 mg/kg developed paralysis on day 16 followed by depression, anorexia and weight loss (force feeding was necessary) and was killed.

One of the two cats receiving 200 mg/kg developed paralysis on day 18 followed by anorexia and weight loss (force feeding was necessary), depression; it died on day 50 from a recurrent respiratory infection.

The other cat receiving 200 mg/kg showed no symptoms and was killed on day 28.

The small number of animals used, i.p. route of exposure and questions of sample purity make these results difficult to interpret

Test substance: "Practical grade" Eastman Organic Chemicals
Reliability: (3) invalid

- Mortality in individuals while no signs in others at the same dose;
- No sign at a high (300 mg/kg) dose combined with mortality and severe signs at a lower dose (200 mg/kg)
- 2 of 6 cat died due to disease (ulcer, respir. infection) animals possibly employed in several studies (pretreated)

24.07.2002 (76)

<table>
<thead>
<tr>
<th>Type</th>
<th>LD50</th>
</tr>
</thead>
<tbody>
<tr>
<td>Value</td>
<td>> 3000 mg/kg bw</td>
</tr>
<tr>
<td>Species</td>
<td>mouse</td>
</tr>
<tr>
<td>Strain</td>
<td>no data</td>
</tr>
<tr>
<td>Sex</td>
<td>male</td>
</tr>
<tr>
<td>Number of animals</td>
<td>10</td>
</tr>
<tr>
<td>Vehicle</td>
<td>other: 70 % W/V in 95 % v/v aq. ethanol</td>
</tr>
<tr>
<td>Doses</td>
<td>3000 mg/kg</td>
</tr>
<tr>
<td>Route of admin.</td>
<td>s.c.</td>
</tr>
<tr>
<td>Exposure time</td>
<td></td>
</tr>
<tr>
<td>Method</td>
<td></td>
</tr>
<tr>
<td>Year</td>
<td>1960</td>
</tr>
<tr>
<td>GLP</td>
<td>no data</td>
</tr>
<tr>
<td>Test substance</td>
<td></td>
</tr>
</tbody>
</table>

Method: PARAMETERS: observation(1 month), mortality, necropsy
Remark: no further detail
Result: MORTALITY: none
OBSERVATION: no effects
NECROPSY: residual test substance found at site of treatment in 1/10 mice

Test substance: "Practical grade" Eastman Organic Chemicals
Reliability: (2) valid with restrictions

10.07.2002 (76)

<table>
<thead>
<tr>
<th>Type</th>
<th>LD50</th>
</tr>
</thead>
<tbody>
<tr>
<td>Value</td>
<td>100 - 200 mg/kg bw</td>
</tr>
<tr>
<td>Species</td>
<td>cat</td>
</tr>
<tr>
<td>Strain</td>
<td>no data</td>
</tr>
<tr>
<td>Sex</td>
<td>no data</td>
</tr>
<tr>
<td>Number of animals</td>
<td></td>
</tr>
<tr>
<td>Vehicle</td>
<td>no data</td>
</tr>
<tr>
<td>Doses</td>
<td></td>
</tr>
<tr>
<td>Route of admin.</td>
<td>s.c.</td>
</tr>
<tr>
<td>Exposure time</td>
<td></td>
</tr>
<tr>
<td>Method</td>
<td></td>
</tr>
<tr>
<td>Year</td>
<td>1989</td>
</tr>
<tr>
<td>GLP</td>
<td>no data</td>
</tr>
<tr>
<td>Test substance</td>
<td></td>
</tr>
</tbody>
</table>

Reliability: (3) invalid
OECD SIDS
TRIPHENYL PHOSPHATE

5. TOXICITY

ID: 115-86-6

DATE: 20.08.2002

Remark	no detail
Reliability	(4) not assignable
04.07.2002	

Type	LD0
Value	> 3000 mg/kg bw
Species	rat
Strain	other: Holtzman
Sex	male
Number of animals	10
Vehicle	other: 70 % W/V in 95 % v/v aq. ethanol
Doses	3000 mg/kg
Route of admin.	s.c.
Exposure time	
Method	
Year	1960
GLP	no data
Test substance	

Method
- PARAMETERS: observation(1 month), mortality, necropsy

Remark
- no further detail

Result
- MORTALITY: none
- OBSERVATION: no effects
- NECROPSY: residual test substance found at site of treatment in 5/10 rats

Test substance
- "Practical grade" Eastman Organic Chemicals

Reliability
- (2) valid with restrictions
- few data on study design reported

10.07.2002

Type	LDLo
Value	> 1000 mg/kg bw
Species	cat
Strain	no data
Sex	no data

Method
- PARAMETERS: observation(1 month), mortality, necropsy

Result
- MORTALITY: none
- OBSERVATION: no effects
- NECROPSY: residual test substance found at site of treatment in 4/10 guinea pigs

Test substance
- "Practical grade" Eastman Organic Chemicals

Reliability
- (2) valid with restrictions
- few details on study design reported

10.07.2002
Number of animals : 8
Vehicle : other: propylene glycol or corn oil
Doses : 400-700-1000 mg/kg
Route of admin. : s.c.
Exposure time :
Method :
Year : 1979
GLP : no
Test substance :

Method : Five cats were given a single s.c. dose of TPP (99.99% pure) dissolved in corn oil or propylene glycol and observed for signs of neurotoxicity for up to 3 months. One cat received 1000 mg/kg TPP in corn oil, and 2 received doses of 700 mg/kg TPP in corn oil, and 2 received doses of 400 mg/kg TPP in propylene glycol. Control cats (2) received injections of corn oil or propylene glycol.

PARAMETERS: observation, mortality, necropsy

Remark : Conclusion: TPP is not neurotoxic in the cat. Earlier studies were complicated by the fact that TPP prepared from coal-tar sources containing impurities which are neurotoxic.

Result : All cats dosed except one receiving 400 mg/kg lost weight.
The cat that lost weight after receiving 400 mg/kg (about 31% of its original body weight) showed no signs of unusual weakness or ataxia during the 5 weeks after dosing. It returned to about its original weight within 3 months and seemed to be normal in behavior and appearance.
The other cat receiving 400 mg/kg never showed any signs of toxicity.
The 2 cats given 700 mg/kg TPP became anorexic shortly after dosing and prostrate in 3-7 days after injection. One was found to have a perforated ulcer in the stomach, and both had hyperemic intestines. Microscopic examination showed no evidence of neuropathology, but did show generalized vascular damage with edema in many tissues, especially the colon. Blood samples showed that cholinesterase levels were similar to the controls.
The cat receiving 1000 mg/kg became anorexic 1 week after injection and by 3 weeks was prostrate having lost 48% of its body weight. Sections of the brain and spinal cord did not reveal evidence of axon degeneration or demyelination of axons in any tract.

Test substance : zone-refined TPP (declared purity 99.99%)
Reliability : (2) valid with restrictions
high purity of testmaterial (99,99%), sensitive species
low animal number

10.07.2002 (87)

Type : LDLo
Value : >= 400 mg/kg bw
Species : cat
Strain : no data
Sex : no data
Number of animals : 5
Vehicle : other: olive oil
Doses : 200-400-800 mg/kg
Route of admin. : s.c.
Exposure time :
Method : other: See freetext
Year : 1932
GLP : no data
Test substance : no data

Method : Three cats received single s.c. doses of 200 mg/kg TPP in olive oil. One cat received 400 mg/kg and another received 800 mg/kg TPP in olive oil.

PARAMETERS: observation (21 days), histopathology(CNS and selected peripheral nerves)

Result : MORTALITY:
The cat receiving 800 mg/kg died on day 2; cat receiving 400 mg/kg died on day 5
OBSERVATION:
400 mg/kg: flaccid paresis and hyperexcitability;
200 mg/kg: muscular tremors, flaccid paresis and spastic gait shortly after dosing (sacrificed on days 10 (two cats) and 21 (1 cat)).
HISTOPATHOLOGY:
peripheral nerve degeneration in all cats.

Reliability : (4) not assignable
early study; few animals
02.07.2002 (88)

Type : LDLo
Value : = 500 - 1000 mg/kg bw
Species : monkey
Strain : no data
Sex : no data
Number of animals : 2
Vehicle : no data
Doses : 500-1000 MG/KG
Route of admin. : s.c.
Exposure time :
Method : other: One monkey was administered 1000 mg/kg TPP subcutaneously and observed until death. A second monkey was administered 500 mg/kg TPP s.c. and observed for 10 days.

Year : 1932
GLP : no data
Test substance : no data

Method : PARAMETERS: observation, mortality, histopathology of nerves system
Result : MORTALITY: 1 of 2
OBSERVATION:
The monkey receiving 1000 mg/kg TPP died the next day following several hours of general prostration and flaccid paralysis of entire body.
Monkey receiving 500 mg/kg showed no effects for 8 days when pronounced flaccid paralysis of the extremities developed. In the next two days the conditions progressed involving the upper extremities as well. This animal was killed.
HISTOPATHOLOGY: peripheral nerve degeneration

Reliability : (4) not assignable
early study; no details on testsubstance and animals
only 2 animals (1 per dose)
02.07.2002 (88)

Type : other
Value : > 500 mg/kg bw
Species : other: hen
Strain : other: leghorn
Sex : male

02.07.2002 (88)
OECD SIDS
TRIPHENYL PHOSPHATE
5. TOXICITY
ID: 115-86-6
DATE: 20.08.2002

Number of animals : 2
Vehicle : other: undiluted
Doses : 500 mg/kg
Route of admin. : s.c.
Exposure time :
Method :
Year : 1956
GLP : no
Test substance :

Method : Two cockerels were administered TPP s.c. at a dosage of 500 mg/kg one time and observed for signs of neurotoxicity for at least 14 days.
Result : No signs of neurotoxicity developed in either cockerel. There was no histologic evidence of degeneration in the brain, cord, or sciatic nerves.
Test substance : 98% purity or greater
Reliability : (2) valid with restrictions early study few animals

10.07.2002 (80)

Type : other: LD
Value : 1000 mg/kg bw
Species : rabbit
Strain : no data
Sex : no data
Number of animals :
Vehicle :
Doses :
Route of admin. : s.c.
Exposure time :
Method :
Year : 1943
GLP : no data
Test substance : no data

Result : 1000 mg/kg: fatal after repeated administration
Reliability : (4) not assignable secondary citation, no details

10.07.2002 (86)

Type : LD0
Value : > 1000 mg/kg bw
Species : rabbit
Strain : no data
Sex : no data
Number of animals :
Vehicle : other: olive oil
Doses : 1000 mg/kg
Route of admin. : i.m.
Exposure time :
Method :
Year : 1932
GLP : no data
Test substance : no data

Result : No effects were noted
Test substance : crystalline technical product, Testmaterial of unknown purity twice recrystalized from conc. H2SO4 and benzene; sharp melting point melting point reduced by "purification";
5. TOXICITY

ID: 115-86-6
DATE: 20.08.2002

Reliability: (4) not assignable
"Purification" reduced melting point;
no details of study design (unknown number of animals)

10.07.2002

Type: LD0
Value: = 200 mg/kg bw
Species: cat
Strain:
Sex: no data
Number of animals: 8
Vehicle: no data
Doses: 100 - 1000 mg/kg
Route of admin.: other
Exposure time:
Method:
Year: 1932
GLP: no data
Test substance: no data

Method: Eight cats were administered TPP by injection (route not mentioned) and
observed for up to 30 days.
Dosages ranged from 100-1000 mg/kg.

Result: 100 mg/kg was considered to be the no effect level.
Minimum toxic dose was 200 mg/kg.
One cat given 200 mg/kg did not die but displayed signs of toxicity
including hyperexcitability and tremors, spastic gait. On the 17th day
generalized flaccid paralysis occurred.
Animals receiving 400-1000 mg/kg died during the course of the study

Test substance: crystalline technical product, Testmaterial of unknown purity
twice recrystalized from conc. H2SO4 and benzene; sharp melting point
melting point reduced by "purification";

Reliability: (4) not assignable
early study,
low animal number
Purification reduced melting point;
findings not confirmed in later studies
Evaluation of this study is not possible due to omission of key details of
study design.

10.07.2002

5.2.1 SKIN IRRITATION

Species: rabbit
Concentration: 500 mg
Exposure: Semiocclusive
Exposure time: 4 hour(s)
Number of animals: 3
Vehicle: water
PDII:
Result: not irritating
Classification: not irritating
Method: OECD Guide-line 404 "Acute Dermal Irritation/Corrosion"
Year: 1990
GLP: yes
Test substance: other TS: 99.7 % Disflamoll TP

Method: The test material was moistened with water and applied under a
semiocclusive patch
Result: no signs of irritation appeared within 7 days
Reliability	(1) valid without restriction guideline study, GLP, full report available
Flag	Critical study for SIDS endpoint
Species	rabbit
Concentration	500 mg
Exposure	Semiocclusive
Exposure time	24 hour(s)
Number of animals	6
Vehicle	
PDII	
Result	not irritating
Classification	not irritating
Method	other: see remarks
Year	1976
GLP	no data
Test substance	no data
Method	6 adult rabbits, shaved back, intact or abraded skin, 500 mg, 24 hours exposure time, observations at 24 and 72 hours. PARAMETERS: erythema, edema
Reliability	(2) valid with restrictions short report, main details presented
Flag	Critical study for SIDS endpoint
Species	rabbit
Concentration	500 mg
Exposure	Occlusive
Exposure time	24 hour(s)
Number of animals	6
Vehicle	
PDII	
Result	not irritating
Classification	not irritating
Method	other: see remarks
Year	1983
GLP	no data
Test substance	other TS: Triphenyl phosphate
Method	test in accordance with "Hazardous Substances regulations" under the U.S.A. Federal Hazardous Substances Labelling Act Sect. 191.11 (February 1965) Method: The test material was applied under two patches on the backs of six rabbits (3/sex), each receiving 1.0 ml/patch of a 50 mg/ml suspension. One site was intact and the other abraded skin. The patches were occluded for 24 hours and then removed. Resulting irritation was scored at 24 and 72 hours after patch removal. PARAMETERS: erythema, edema
Reliability	(2) valid with restrictions guideline study, full report available,

Result	Erythema: 0/6 rabbits (intact and abraded skin) Edema: 0/6 rabbits (intact and abraded skin)
Reliability	(2) valid with restrictions short report, main details presented
Flag	Critical study for SIDS endpoint
Species	rabbit
Concentration	500 mg
Exposure	Occlusive
Exposure time	24 hour(s)
Number of animals	6
Vehicle	
PDII	
Result	not irritating
Classification	not irritating
Method	other: see remarks
Year	1983
GLP	no data
Test substance	other TS: Triphenyl phosphate
Method	test in accordance with "Hazardous Substances regulations" under the U.S.A. Federal Hazardous Substances Labelling Act Sect. 191.11 (February 1965) Method: The test material was applied under two patches on the backs of six rabbits (3/sex), each receiving 1.0 ml/patch of a 50 mg/ml suspension. One site was intact and the other abraded skin. The patches were occluded for 24 hours and then removed. Resulting irritation was scored at 24 and 72 hours after patch removal. PARAMETERS: erythema, edema
Reliability	(2) valid with restrictions guideline study, full report available,
Flag: Critical study for SIDS endpoint

<table>
<thead>
<tr>
<th>Date</th>
<th>Species</th>
<th>Concentration</th>
<th>Exposure</th>
<th>Exposure time</th>
<th>Number of animals</th>
<th>Vehicle</th>
<th>PDII</th>
<th>Result</th>
<th>Classification</th>
<th>Method</th>
<th>GLP</th>
<th>Test substance</th>
<th>Test substance</th>
<th>Reliability</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.07.2002</td>
<td>rabbit</td>
<td>no data</td>
<td>no data</td>
<td>no data</td>
<td></td>
<td></td>
<td></td>
<td>not irritating</td>
<td>not irritating</td>
<td>rabbit intradermal irritation test</td>
<td></td>
<td>no data</td>
<td>other TS: 70 % solved in alcohol</td>
<td>(4) not assignable</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>not irritating</td>
<td>not irritating</td>
<td>0.5 ml of a 70 % solution in alcohol; skin contact 24 to 72h.</td>
<td>(4) not assignable</td>
<td>"Practical grade" Eastman Organic Chemicals</td>
<td>"Practical grade" Eastman Organic Chemicals</td>
<td></td>
</tr>
<tr>
<td>10.07.2002</td>
<td>rat</td>
<td>no data</td>
<td>no data</td>
<td>4 hour(s)</td>
<td></td>
<td></td>
<td></td>
<td>not irritating</td>
<td>not irritating</td>
<td>other: oil</td>
<td></td>
<td>no data</td>
<td>other: oil</td>
<td>(4) not assignable</td>
</tr>
</tbody>
</table>

Reliability: (4) not assignable

Tabular report only

Irrelevant route for local irritation

Flag: Critical study for SIDS endpoint

GLP: no data
5.2.2 EYE IRRITATION

Species: rabbit
Concentration: 99.7 %
Dose: 70 other: mg
Exposure time: 24 hour(s)
Comment: rinsed after (see exposure time)
Number of animals: 3
Vehicle:
Result: not irritating
Classification: not irritating
Method: OECD Guide-line 405 "Acute Eye Irritation/Corrosion"
Year: 1990
GLP: yes
Test substance: other TS: 99.7 % Disflamoll TP

Result:
CORNEA: no findings
IRIS: no findings
CONJUNCTIVA: slight rednes(3/3; 1-24 h), slight swelling (1/3; 1 h),
discharge (3/3; 1 h)

Reliability: (1) valid without restriction
guideline study, GLP, full report available
Flag: Critical study for SIDS endpoint

Species: rabbit
Concentration: no data
Dose: 100 other: mg/eye
Exposure time: unspecified
Comment:
Number of animals: 9
Vehicle: none
Result: slightly irritating
Classification:
Method: in analogy to 16 CFR 1500.42.
100 mg/animal,
6 animals: unwashed eyes;
3 animals: eyes washed 4 seconds after instillation, observation 24, 48 and
72 hours after instillation; 7 days

Result: without wash: slightly irritating (redness grade 1 in 6/6; discharge in 4/6;
complete recovery in 72 hours)
with wash 4 seconds after instillation: not irritating (no response at all)

Reliability: (2) valid with restrictions
short report
individual findings reported
Flag: Critical study for SIDS endpoint
5. TOXICITY

Species: rabbit
Concentration: no data
Dose: 100 other: mg
Exposure time: unspecified
Comment: other: rinsed after 30 seconds or not rinsed
Number of animals: 6
Vehicle: none
Result: slightly irritating
Classification: irritating
Method: other: See freetext
Year: 1983
GLP: no data
Test substance: no data

Method: test in accordance with "Hazardous Substances regulations" under the U.S.A. Federal Hazardous Substances Labelling Act Sect. 191.12 (February 1965)

100 mg of the test material were instilled into the conjunctival sac of the left eye of each of 6 animals (New Zealand White rabbits; 3/sex) and the eyelid was held closed for 1 second. After 30 seconds the material was flushed out of the eyes of three of the rabbits with approximately 200 ml warm water. Rabbits were examined at 1, 24, 48 and 72 hours post-dose, and daily up to 6 days to determine reversibility of response. Fluorescein was used to aid assessment of corneal damage.

Result: Signs of irritation were observed in all animals during the first 24 hours post-dose. Unwashed eyes returned to normal later than washed. All eyes had returned to normal by day 6. Triphenyl phosphate is considered a minimal eye irritant in this model.

Reliability: (2) valid with restrictions
full report available
guideline study
no data on purity of test substance

Flag: 08.10.2002
Critical study for SIDS endpoint

5.3 SENSITIZATION

Type: Guinea pig maximization test
Species: guinea pig
Concentration:
1st: Induction 5 % intracutaneous
2nd: Induction 75 % occlusive epicutaneous
3rd: Challenge 75 % occlusive epicutaneous
Number of animals: 10
Vehicle: peanut oil
Result: not sensitizing
Classification: not sensitizing
Method: OECD Guide-line 406 "Skin Sensitization"
Year: 2001
GLP: yes
Test substance:

Remark: positiv control: Mercaptobenzthiazole, 9/9 positive
Reliability: (1) valid without restriction
conforming to current guideline and GLP

Flag: 04.06.2003
Critical study for SIDS endpoint

Type: Patch-Test
<table>
<thead>
<tr>
<th>Species</th>
<th>human</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of animals</td>
<td></td>
</tr>
<tr>
<td>Vehicle</td>
<td></td>
</tr>
<tr>
<td>Result</td>
<td></td>
</tr>
<tr>
<td>Classification</td>
<td></td>
</tr>
<tr>
<td>Method</td>
<td>other: 4 persons who tested positive to plastic discs standardly used in patch testing were tested for response to TPP (10% in acetone).</td>
</tr>
<tr>
<td>Year</td>
<td>1964</td>
</tr>
<tr>
<td>GLP</td>
<td>no</td>
</tr>
<tr>
<td>Test substance</td>
<td>no data</td>
</tr>
<tr>
<td>Method</td>
<td>retrospective evaluation of 23192 human patch tests</td>
</tr>
<tr>
<td>Result</td>
<td>4 persons tested positive to TPP. Among 23,192 patients who were tested using plastic disc patches between 1950 and 1962 only 0.065% had shown positive reactions to the discs, a remarkably low figure in view of the many sources of contact with TPP.</td>
</tr>
<tr>
<td>Reliability</td>
<td>(2) valid with restrictions</td>
</tr>
<tr>
<td>Flag</td>
<td>Critical study for SIDS endpoint</td>
</tr>
<tr>
<td>Date</td>
<td>03.07.2002</td>
</tr>
</tbody>
</table>

Type	Patch-Test	
Species	human	
Number of animals		
Vehicle		
Result	sensitizing	
Classification		
Method	other: A single person who responded positively to cellulose acetate film was patched with TPP.	
Year	1964	
GLP	no	
Test substance	no data	
Remark	Patient reacted to cellulose acetate film Person also tested positive to TPP patch.	
Reliability	(2) valid with restrictions	
Flag	Critical study for SIDS endpoint	
Date	03.07.2002	(94)

Type	Patch-Test	
Species	human	
Number of animals		
Vehicle		
Result	sensitizing	
Classification		
Method	other: see free text	
Year		
GLP	no	
Test substance	no data	
Remark	Case reports of individuals suffering from allergic dermatitis caused by TPP in spectacle frames or glue	
Reliability	(2) valid with restrictions	
Flag	Critical study for SIDS endpoint	
Date	03.07.2002	(95) (96)

| Type | Patch-Test |
Species: human
Concentration:
1st: 5% occlusive epicutaneous
2nd:
3rd:
Number of animals:
Vehicle: petrolatum
Result: not sensitizing
Classification:
Method: retrospective evaluation of human patch tests
Year: 1997
GLP:

Test substance:

Method: retrospective evaluation of human patch tests
Result: patients with suspected occupational dermatoses were patch-tested with a variety of plastic and glue allergens; in 174 patients no allergic reaction towards triphenyl phosphate was found; one person showed irritant reactions (=0.6%)
Test condition: Patients were treated once with 2 days occlusive exposure and evaluated at 3 time points (day 2, 3, 4-6) thereafter. Reactions were scored according to ICDRG recommendations. No further details described.
Reliability: (2) valid with restrictions
Flag: Critical study for SIDS endpoint

Type: Patch-Test
Species: human
Number of animals:
Vehicle:
Result: sensitizing
Classification:
Method:
Year: 1966
GLP: no
Test substance: no data

Method: One person with multiple causes producing dermatitis was patched with TPP and other aryl phosphates.
Result: Person tested positive to all patches.
Reliability: (2) valid with restrictions
Flag: Critical study for SIDS endpoint

Type: Patch-Test
Species: human
Number of animals:
Vehicle:
Result: not sensitizing
Classification:
Method:
Year: 1977
GLP: no
Test substance: no data

Method: One case is presented in which a person exhibiting a dermal response to
<table>
<thead>
<tr>
<th>Type</th>
<th>Patch-Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>Species</td>
<td>human</td>
</tr>
<tr>
<td>Number of animals</td>
<td></td>
</tr>
<tr>
<td>Vehicle</td>
<td></td>
</tr>
<tr>
<td>Result</td>
<td></td>
</tr>
<tr>
<td>Classification</td>
<td></td>
</tr>
<tr>
<td>Method</td>
<td></td>
</tr>
<tr>
<td>Year</td>
<td>1999</td>
</tr>
<tr>
<td>GLP</td>
<td></td>
</tr>
<tr>
<td>Test substance</td>
<td></td>
</tr>
</tbody>
</table>

Method: TPP at 5%; no further data

Result: 1 of 358 patients tested reacted positive from 1991 to 1996; 3 of 358 showed irritation; no further data

Reliability: (2) valid with restrictions

Flag: Critical study for SIDS endpoint

<table>
<thead>
<tr>
<th>Type</th>
<th>Patch-Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>Species</td>
<td>human</td>
</tr>
<tr>
<td>Number of animals</td>
<td></td>
</tr>
<tr>
<td>Vehicle</td>
<td></td>
</tr>
<tr>
<td>Result</td>
<td>not sensitizing</td>
</tr>
<tr>
<td>Classification</td>
<td></td>
</tr>
<tr>
<td>Method</td>
<td></td>
</tr>
<tr>
<td>Year</td>
<td>1995</td>
</tr>
<tr>
<td>GLP</td>
<td></td>
</tr>
<tr>
<td>Test substance</td>
<td></td>
</tr>
</tbody>
</table>

Method: retrospective evaluation of human patch tests

Result: None of 343 patients reacted to TPP

Reliability: (2) valid with restrictions

Flag: Critical study for SIDS endpoint

<table>
<thead>
<tr>
<th>Type</th>
<th>Patch-Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>Species</td>
<td>human</td>
</tr>
<tr>
<td>Number of animals</td>
<td></td>
</tr>
<tr>
<td>Vehicle</td>
<td></td>
</tr>
<tr>
<td>Result</td>
<td>sensitizing</td>
</tr>
<tr>
<td>Classification</td>
<td></td>
</tr>
<tr>
<td>Method</td>
<td></td>
</tr>
<tr>
<td>Year</td>
<td>1992</td>
</tr>
<tr>
<td>GLP</td>
<td></td>
</tr>
<tr>
<td>Test substance</td>
<td></td>
</tr>
</tbody>
</table>

Remark: concomittant positive reactions to paraben mix, cobalt chloride, potassium dichromate, and formaldehyde

Reliability: (4) not assignable
5.4 REPEATED DOSE TOXICITY

<table>
<thead>
<tr>
<th>Date</th>
<th>Type</th>
<th>Species</th>
<th>Method</th>
<th>Result</th>
<th>Reliability</th>
<th>Flag</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.07.2002</td>
<td>other: case reports, review</td>
<td>human</td>
<td>1 patient</td>
<td>Contact dermatitis after prolonged intense contact to a hearing aid</td>
<td>(2) valid with restrictions</td>
<td>Critical study for SIDS endpoint</td>
</tr>
</tbody>
</table>

5. TOXICITY

<table>
<thead>
<tr>
<th>Date</th>
<th>Type</th>
<th>Species</th>
<th>Result</th>
<th>Classification</th>
<th>Method</th>
<th>Reliability</th>
<th>Flag</th>
</tr>
</thead>
<tbody>
<tr>
<td>29.07.2002</td>
<td>other: case reports</td>
<td>human</td>
<td>Review on eyeglass allergic contact dermatitis: Triphenyl phosphate as a cause of allergic reactions</td>
<td>(3) invalid</td>
<td>Review, no details</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Date</th>
<th>Type</th>
<th>Species</th>
<th>Result</th>
<th>Classification</th>
<th>Method</th>
<th>GLP</th>
<th>Test substance</th>
<th>Reliability</th>
<th>Flag</th>
</tr>
</thead>
<tbody>
<tr>
<td>03.07.2002</td>
<td>other: 2 case reports</td>
<td>human</td>
<td>not sensitizing</td>
<td></td>
<td>Patch test with 0.5% TPP in Pet was negative</td>
<td>(2) valid with restrictions</td>
<td></td>
<td>Critical study for SIDS endpoint</td>
<td></td>
</tr>
<tr>
<td>04.07.2002</td>
<td>other: Review</td>
<td></td>
<td>There are only scarce indication of a sensitising potential. No data on experimental animals are available.</td>
<td>(5 references)</td>
<td></td>
<td>(2) valid with restrictions</td>
<td>secondary review</td>
<td></td>
<td></td>
</tr>
<tr>
<td>04.07.2002</td>
<td>other: case reports</td>
<td>human</td>
<td>Contact dermatitis after prolonged intense contact to a hearing aid</td>
<td></td>
<td></td>
<td>(2) valid with restrictions</td>
<td>case report</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Date</th>
<th>Type</th>
<th>Species</th>
<th>Result</th>
<th>Classification</th>
<th>Method</th>
<th>Reliability</th>
<th>Flag</th>
</tr>
</thead>
<tbody>
<tr>
<td>04.07.2002</td>
<td>other: Review</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(2) valid with restrictions</td>
<td>secondary review</td>
</tr>
<tr>
<td>04.07.2002</td>
<td>other: case reports</td>
<td>human</td>
<td></td>
<td></td>
<td></td>
<td>(2) valid with restrictions</td>
<td>case report</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Date</th>
<th>Type</th>
<th>Species</th>
<th>Result</th>
<th>Classification</th>
<th>Method</th>
<th>Reliability</th>
<th>Flag</th>
</tr>
</thead>
<tbody>
<tr>
<td>04.07.2002</td>
<td>other: Review</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(2) valid with restrictions</td>
<td>secondary review</td>
</tr>
<tr>
<td>04.07.2002</td>
<td>other: case reports</td>
<td>human</td>
<td></td>
<td></td>
<td></td>
<td>(2) valid with restrictions</td>
<td>case report</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Date</th>
<th>Type</th>
<th>Species</th>
<th>Result</th>
<th>Classification</th>
<th>Method</th>
<th>Reliability</th>
<th>Flag</th>
</tr>
</thead>
<tbody>
<tr>
<td>04.07.2002</td>
<td>other: Review</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(2) valid with restrictions</td>
<td>secondary review</td>
</tr>
<tr>
<td>04.07.2002</td>
<td>other: case reports</td>
<td>human</td>
<td></td>
<td></td>
<td></td>
<td>(2) valid with restrictions</td>
<td>case report</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Date</th>
<th>Type</th>
<th>Species</th>
<th>Result</th>
<th>Classification</th>
<th>Method</th>
<th>Reliability</th>
<th>Flag</th>
</tr>
</thead>
<tbody>
<tr>
<td>04.07.2002</td>
<td>other: Review</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(2) valid with restrictions</td>
<td>secondary review</td>
</tr>
<tr>
<td>04.07.2002</td>
<td>other: case reports</td>
<td>human</td>
<td></td>
<td></td>
<td></td>
<td>(2) valid with restrictions</td>
<td>case report</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Date</th>
<th>Type</th>
<th>Species</th>
<th>Result</th>
<th>Classification</th>
<th>Method</th>
<th>Reliability</th>
<th>Flag</th>
</tr>
</thead>
<tbody>
<tr>
<td>04.07.2002</td>
<td>other: Review</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(2) valid with restrictions</td>
<td>secondary review</td>
</tr>
<tr>
<td>04.07.2002</td>
<td>other: case reports</td>
<td>human</td>
<td></td>
<td></td>
<td></td>
<td>(2) valid with restrictions</td>
<td>case report</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Date</th>
<th>Type</th>
<th>Species</th>
<th>Result</th>
<th>Classification</th>
<th>Method</th>
<th>Reliability</th>
<th>Flag</th>
</tr>
</thead>
<tbody>
<tr>
<td>04.07.2002</td>
<td>other: Review</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(2) valid with restrictions</td>
<td>secondary review</td>
</tr>
<tr>
<td>04.07.2002</td>
<td>other: case reports</td>
<td>human</td>
<td></td>
<td></td>
<td></td>
<td>(2) valid with restrictions</td>
<td>case report</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Date</th>
<th>Type</th>
<th>Species</th>
<th>Result</th>
<th>Classification</th>
<th>Method</th>
<th>Reliability</th>
<th>Flag</th>
</tr>
</thead>
<tbody>
<tr>
<td>04.07.2002</td>
<td>other: Review</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(2) valid with restrictions</td>
<td>secondary review</td>
</tr>
<tr>
<td>04.07.2002</td>
<td>other: case reports</td>
<td>human</td>
<td></td>
<td></td>
<td></td>
<td>(2) valid with restrictions</td>
<td>case report</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Date</th>
<th>Type</th>
<th>Species</th>
<th>Result</th>
<th>Classification</th>
<th>Method</th>
<th>Reliability</th>
<th>Flag</th>
</tr>
</thead>
<tbody>
<tr>
<td>04.07.2002</td>
<td>other: Review</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(2) valid with restrictions</td>
<td>secondary review</td>
</tr>
<tr>
<td>04.07.2002</td>
<td>other: case reports</td>
<td>human</td>
<td></td>
<td></td>
<td></td>
<td>(2) valid with restrictions</td>
<td>case report</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Date</th>
<th>Type</th>
<th>Species</th>
<th>Result</th>
<th>Classification</th>
<th>Method</th>
<th>Reliability</th>
<th>Flag</th>
</tr>
</thead>
<tbody>
<tr>
<td>04.07.2002</td>
<td>other: Review</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(2) valid with restrictions</td>
<td>secondary review</td>
</tr>
<tr>
<td>04.07.2002</td>
<td>other: case reports</td>
<td>human</td>
<td></td>
<td></td>
<td></td>
<td>(2) valid with restrictions</td>
<td>case report</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Date</th>
<th>Type</th>
<th>Species</th>
<th>Result</th>
<th>Classification</th>
<th>Method</th>
<th>Reliability</th>
<th>Flag</th>
</tr>
</thead>
<tbody>
<tr>
<td>04.07.2002</td>
<td>other: Review</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(2) valid with restrictions</td>
<td>secondary review</td>
</tr>
<tr>
<td>04.07.2002</td>
<td>other: case reports</td>
<td>human</td>
<td></td>
<td></td>
<td></td>
<td>(2) valid with restrictions</td>
<td>case report</td>
</tr>
</tbody>
</table>
OECD SIDS
TRIPHENYL PHOSPHATE
5. TOXICITY
ID: 115-86-6
DATE: 20.08.2002

Route of admin. : oral feed
Exposure period : 4 months
Frequency of treatm. : daily
Post exposure period : no
Doses : 0.25, 0.5, 0.75 or 1 % in feed; = 161-345-517-711 mg/kg bw/day
Control group : other: feed without TPP
Method : other: 10 animals/group; behavioral test on all rats monthly
Year : 1986
GLP : no data
Test substance : purity 98 %

Method : DESIGN: male rats only, 10 animals/group 4 month dietary treatment, monthly tests,
PARAMETERS:
open field activity, accelerating rod, fore limb grip strength, negative geotaxis, body weight (weekly), food consumption (daily),
Remark : Study aimed at neurotoxicity; few other endpoints examined
Result : OBSERVATION: no signs of toxicity
BEHAVIORAL TEST (monthly): no evidence of overt neurotoxicity.
BODY WEIGHT GAIN: very slight depression at 0.5% TPP and above in the diet
FOOD CONSUMPTION: no significant effect
NOEL = 161 mg/kg bw/day
Test substance : purity 98 %
Reliability : (2) valid with restrictions
only few standard endpoints examined; neurotoxicity study; no clin. pathology or histopathology
Flag : Critical study for SIDS endpoint
03.08.2005
(108)

Type : Sub-acute
Species : rat
Sex : male
Strain : other: Holtzman
Route of admin. : oral feed
Exposure period : 35 d
Frequency of treatm. : daily
Post exposure period : no
Doses : 0.1 or 0.5 % in feed (estimated dose: 70 - 350 mg/kg bw/day)
Control group : yes, concurrent no treatment
Method :
Year : 1960
GLP : no data
Test substance : other TS: substance purity not known

Method : DESIGN: 5 male rats/group, 2 treated(diet)/ 1 control group, 5 weeks treatment + 2 weeks recovery (3/5 rats)
PARAMETERS:
observation, body weight, food consumption, hematology (hemoglobin content, cell volume, red cell count, total and differential white cell count), body weights (3x/week), hematology, gross necropsy, organ weights (liver, kidney)
Remark : The 0.1% group started with 5% but the dose was reduced after 3 days due to severely reduced food consumption
Result : BODY WEIGHTS: slight depression in growth rate (0.5 % group)
HEMATOLOGY: no change
NECROPSY: no gross abnormalities
ORGAN WEIGHTS: increase in liver weights (0.5 % group)
NOEL 0.1 %
<table>
<thead>
<tr>
<th>Test substance</th>
<th>"Practical grade" Eastman Organic Chemicals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reliability</td>
<td>(2) valid with restrictions</td>
</tr>
<tr>
<td></td>
<td>early study, standard endpoints missing, no clin. chemistry or histopathology</td>
</tr>
<tr>
<td>Flag</td>
<td>Critical study for SIDS endpoint</td>
</tr>
</tbody>
</table>

| 03.08.2005 | (76) |

<table>
<thead>
<tr>
<th>Type</th>
<th>Species</th>
<th>Rat</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sex</td>
<td>Male/female</td>
<td></td>
</tr>
<tr>
<td>Strain</td>
<td>No data</td>
<td></td>
</tr>
<tr>
<td>Route of admin.</td>
<td>Gavage</td>
<td></td>
</tr>
<tr>
<td>Exposure period</td>
<td>3 months</td>
<td></td>
</tr>
<tr>
<td>Frequency of treatm.</td>
<td>Daily</td>
<td></td>
</tr>
<tr>
<td>Post exposure period</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>Doses</td>
<td>380, 1900 mg/kg bw/day</td>
<td></td>
</tr>
<tr>
<td>Control group</td>
<td>No data specified</td>
<td></td>
</tr>
<tr>
<td>NOAEL</td>
<td>= 1900 mg/kg bw</td>
<td></td>
</tr>
<tr>
<td>Method</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Year</td>
<td>1974</td>
<td></td>
</tr>
<tr>
<td>GLP</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Test substance</td>
<td>No data</td>
<td></td>
</tr>
</tbody>
</table>

Method

DESIGN: 2 groups, gavage, high doses (0.1 or 0.5 x LD50)
PARAMETERS: body weight, choline esterase (blood), organ weights, result:
No toxic effects observed
Reliability:
(4) not assignable
abstract only; few experimental details

| 03.08.2005 | (73) |

<table>
<thead>
<tr>
<th>Type</th>
<th>Species</th>
<th>Rat</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sex</td>
<td>Male/female</td>
<td></td>
</tr>
<tr>
<td>Strain</td>
<td>No data</td>
<td></td>
</tr>
<tr>
<td>Route of admin.</td>
<td>Other: oral</td>
<td></td>
</tr>
<tr>
<td>Exposure period</td>
<td>2 months</td>
<td></td>
</tr>
<tr>
<td>Frequency of treatm.</td>
<td>Daily</td>
<td></td>
</tr>
<tr>
<td>Post exposure period</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>Doses</td>
<td>1000 mg/kg bw/day</td>
<td></td>
</tr>
<tr>
<td>Control group</td>
<td>Yes, concurrent vehicle</td>
<td></td>
</tr>
<tr>
<td>Method</td>
<td>Other: Parameters measured were body weight and food consumption. A necropsy was performed on all rats on study. The heart, lungs, kidneys, adrenal gland, intestines, brain, spine, peripheral nerves and muscle were examined histologically.</td>
<td></td>
</tr>
<tr>
<td>Year</td>
<td>1957</td>
<td></td>
</tr>
<tr>
<td>GLP</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Test substance</td>
<td>No data</td>
<td></td>
</tr>
</tbody>
</table>

Method

DESIGN: 9 treated/3 control rats; 1000 mg/kg bw/day in 1 ml vegetable oil; restricted food;
PARAMETERS: body weight(weekly), observation, mortality, necropsy, histopathology (heart, lung, kidneys, adrenals, spleen, GI tract, brain, spinal cord, peripheral nerv, muscle)
Result
MORTALITY: Three rats died on the 14th day and one on the 25th day.
OBSERVATION: All treated animals had reduced appetite and growth rate, neglected fur
BODY WEIGHT: severely reduced body weight gain throughout the study
NECROPSY: no pathologic findings
HISTOPATHOLOGY: pyknotic or swollen ganglionic cells in the spinal cord with vacuole formation; vacuole formation in peripheral nerves. No changes were observed in the myelin sheaths.
effects in liver and kidneys (reduced glycogen storage, single cell necroses, hyaline casts, fatty degeneration in tubuli) are ascribed to the reduced general condition.

Reliability: (3) invalid
- early study; one dose level only, standard endpoints missing; not all observed parameters reported
- TS not characterised;

03.08.2005 (74)

Type: rat
Species: male/female
Strain: Sprague-Dawley
Route of admin.: dietary
Exposure period: 120 days
Frequency of treatm.: daily
Doses: 0.25, 0.5, 0.75, 1% of diet (estimated dose: 170-700 mg/kg bw/day)
Control group: yes, concurrent no treatment
LOAEL: = 1 %
Method: Rats were dosed for 120 days and then tested for immunotoxicity response to sRBCs. Histopathology and clinical chemistry were performed.

PARAMETERS:
- body weight (weekly)
- food consumption (weekly)
- blood chemistry (hemolysin titers, serum collection, serum electrophoresis)
- organ weights (spleen, thymus)
- histopathology (spleen, thymus, lymphnodes)

Result:
- BODY WEIGHT: significant reduction of growth rate in males at 1%
- FOOD CONSUMPTION: temporary increase in males, decrease in females
- CLIN CHEMISTRY: increased levels of alpha- and beta-globulin only in female resp. male rats.
- ORGAN WEIGHT: no effects
- HISTOPATHOLOGY: expanded immunohistochemical evaluation with the humoral response to a T-lymphocyte dependent antigen (SRBC) and immunohistochemical evaluation of B- and T-lymphocyte regions of the spleen, thymus and lymph nodes was without effect.
- NOEL 0.75 %

Test substance: 98% pure
- “stable under the experimental conditions of the feeding study”

Reliability: (2) valid with restrictions
- NON STANDARD TEST, aiming at immunotoxicity

Flag: Critical study for SIDS endpoint
03.08.2005 (109)

Type: rat
Species: male/female
Strain: no data
Route of admin.: unspecified
Exposure period: 3 month
Frequency of treatm.: daily
Post exposure period:

- **Doses:** 1925 mg/kg bw/day
- **Control group:** yes, concurrent vehicle
- **Method:** DESIGN: vehicle: oil (20%), dose: 1/2 LD50
 PARAMETERS: choline esterase (2 h after treatment)
- **Year:** 1969
- **GLP:**
- **Test substance:**

Result:

- **Choline esterase reduced to 37% in blood 2 hours after treatment**
- **no further data**

Reliability:

- **(4) not assignable**
- **report in russian; german abstract;**

Date:

- **03.08.2005**

Type:
- **Sub-acute**

Species:
- **rabbit**

Sex:
- **male/female**

Strain:
- **New Zealand white**

Route of admin.:
- **dermal**

Exposure period:
- **3 x 5 days/week**

Frequency of treatm.:
- **no**

Doses:
- **100-1000 mg/kg bw/day**
- **Control group:** yes, concurrent vehicle

Method:

- **DESIGN:**
 1 control + 2 dose groups; 10 animals/sex
 intact and abraded (2x weekly) skin

 VEHICLE:
 ethanol (conc. 50%); 0.2-2 ml/kg

 APPLICATION:
 open, collar to prevent ingestion,
 6 hours exposure/day

 PARAMETERS:
 observation (erythema, edema, atonia, desquamation, fissuring, eschar formation, exfoliation; daily)
 body weights, hematology (pretest and end: HCT, HB, RBC, WBC), clinical chemistry (pretest and end: GPT, alk. phosphatase, BUN, glc, Tot. Protein, albumin, Ca, inorg. phosphate), necropsy, organ weights (adrenals, ovaries/testes, spleen, thyroid/parathyroid, kidneys, liver), acetyl cholinesterase (plasma, RBC, brain), histopathology (high dose and control; >30 tissues)

Result:

- **CLIN.CHEMISTRY: decrease of acetylcholinesterase activity in plasma, erythrocytes and brain in males and females**

 ALL OTHER PARAMETERS: comparable to control/ no effects

Flag:

- **Critical study for SIDS endpoint**

- **03.08.2005**
Type: rabbit
Species: rabbit
Sex: no data
Strain: no data
Route of admin.: oral unspecified
Exposure period: repeated
Frequency of treatm.: no data
Post exposure period: no data
Doses: 100 to 1000 mg/kg bw/day
Control group: other: no data
Method: year: 1968
GLP: no data
Test substance: no data
Method: no data
Result: kidney damage which clears up quickly
Reliability: (4) not assignable
short summary only, no data on design and parameters

03.08.2005

Type: rabbit
Species: rabbit
Sex: no data
Strain: no data
Route of admin.: other: oral
Exposure period: repeated
Frequency of treatm.: no data
Post exposure period: no
Doses: 100-1000 mg/kg bw/day
Control group: no data specified
Method: other
Year: 1943
GLP: no
Test substance: no data
Method: no data
Result: No death or paralysis
Reliability: (4) not assignable
original publication not available; no details given in Sutton et al. (1960)

03.08.2005

Type: cat
Species: cat
Sex: no data
Strain: no data
Route of admin.: gavage
Exposure period: 5 - 10 d
Frequency of treatm.: 1x/d
Post exposure period: no
Doses: 50 mg/kg bw/day
Control group: no
Method: year: 1957
GLP: no data
Test substance: no data
Method: DESIGN: 4 animals; gavage; 2% in aqueous tragacanth,
PARAMETERS: observation, mortality, choline esterase
Result: OBSERVATION: dyspnoe, weakness, decreased bodyweight, MORTALITY: all animals died within 10 days CHOLINE ESTERASE: activity 71, 68, 65 or 64 % of normal values,
Reliability: (4) not assignable early study; summary only; few animals

03.08.2005

Type:
Species: cat
Sex: no data
Strain: no data
Route of admin.: gavage
Exposure period: 2 days
Frequency of treatm.: daily
Post exposure period: no
Doses: 200-800 mg/kg bw/day
Control group: no
Method: other
Year: 1957
GLP: no
Test substance: no data

Remark: Results: Signs of toxicity observed were salivation, trembling, diarrhea; all animals died
Reliability: (3) invalid number of animals and dose range insufficient; early study

03.08.2005

Type:
Species: cat
Sex: no data
Strain: no data
Route of admin.: oral unspecified
Exposure period: 30x
Frequency of treatm.: 1x/d
Post exposure period: no
Doses: 10-25 mg/kg bw/day
Control group: no
Method: no
Year: 1957
GLP: no data
Test substance: no data

Method: DESIGN: 2 animals/group;
PARAMETERS: observation, mortality, choline esterase,

Result: OBSERVATION: no sign of toxicity at 10 mg/kg bw/day; weakness, prostration, laboured respiration, severe reduction of body weight at 25 mg/kg bw/day
MORTALITY: 1/2 at 25 mg/kg bw/day (day 27)

Reliability: (4) not assignable cholineresterase activity 77 or 87 % of normal value summary only; early study

03.08.2005
OECD SIDS
5. TOXICITY
ID: 115-86-6
DATE: 20.08.2002

Type: cat
Species: no data
Sex: no data
Strain: no data
Route of admin.: oral unspecified
Exposure period: 8 d
Frequency of treatm.: 1x/d
Post exposure period: up to 8 w
Doses: 1, 5, 20, 50, 100, 250 mg/kg bw/d
Control group: no
Method: no data
Year: 1957
GLP: no data
Test substance: no data

Method: DESIGN: vehicle: oil (food or gavage); 2-3 animals/group; PARAMETERS: observation, body weight, mortality, histopathology
Result: OBSERVATION:
1 mg/kg : only slight depression of body weight
5 mg/kg bw/day : apathy, low food consumption, death
20 mg/kg bw/day : low food consumption
50 - 250 mg/kg bw/day: apathy, tremors, dyspnoea, severely reduced general condition (diarrhea, salivation, neglected fur, weakness, unsteady motion), death

MORTALITY:
0/2 at 1 mg/kg bw/day
1/2 at 5 mg/kg bw/day
0/2 at 20 mg/kg bw/day
2/2 at 50 mg/kg bw/day (killed)
2/2 at 100 mg/kg bw/day
3/3 at 250 mg/kg bw/day

BODY WEIGHT: 5,(but not 20), 50, 100 and 250 mg/kg bw/day caused depression of body weight

The histological signs of neurotoxicity, histological changes in liver, kidney and heart (due to fasting) cannot be assigned to individual treatment groups
Reliability: (4) not assignable
early study
standard endpoints missing
histologic findings cannot be assigned to treatment groups;

03.08.2005 (74)

Type: hen
Species: female
Sex: no data
Strain: other: Rhode Island Red x light Sussex
Route of admin.: gavage
Exposure period: 5 d
Frequency of treatm.: daily
Post exposure period: 21 d
Doses: 5000 mg/kg bw/d as 50 % suspension in arachis oil
Control group: other: yes
Method: no data
Year: 1982
GLP: no data
Test substance: other TS: Reomol TPP as 50 % suspension in arachis oil
Method

DESIGN: 6 hens; gavage in peanut oil (50% w/v suspension) daily for 5 consecutive days; observation for 21 days. Hens with symptoms were sacrificed as the study progressed.

PARAMETERS: observation, mortality, body weight, gross necropsy

Result

OBSERVATION:
lethargy, no evidence of anticholinesterase activity, marked loss of body weight

MORTALITY:
3/6 animals died + 2/6 killed in extremis

BODY WEIGHT: severe reduction

NECROPSY: not reported

Histopathology:
axonal degeneration in spinal cord in 2 treated and 1 control birds
questionable findings in the other control and 3 treated animals
The slides were re-evaluated in 1991 and none of the microscopic findings could be confirmed

Reliability

(3) invalid
Identical findings (axonal degeneration) in control and treated animals at similar incidence and severity
Evaluation of delayed neurotoxicity was confounded by systemic toxicity caused by the excessive dose (5x 5g/kg/day) and could not be confirmed by re-evaluation of slides in 1991
Standard endpoints missing
Identity/Purity of the commercial product tested not known

Type

<table>
<thead>
<tr>
<th>Species</th>
<th>hen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sex</td>
<td>female</td>
</tr>
<tr>
<td>Strain</td>
<td>no data</td>
</tr>
</tbody>
</table>

Exposure period

12 d

Frequency of treatm.

1x/d

Doses

2500 mg/kg bw/d

Control group

other: no data

Method

DESIGN: vehicle: olive oil (20%); total dose: 30000 mg/kg
PARAMETERS: observation

Result

OBSERVATION: no signs of neurotoxicity

Reliability

(4) not assignable
scarce details given; only 2 hens at 1 dose

Type

<table>
<thead>
<tr>
<th>Species</th>
<th>hen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sex</td>
<td>female</td>
</tr>
</tbody>
</table>

Route of admin.

other: oral

Exposure period

6 days (days 1-3, 21-23)

Frequency of treatm.

twice/day
Post exposure period: treatment-free intervals: days 4 to 20 and days 24-42
Doses: 2 x 5000 mg/kg bw/day
Control group: NOAEL = 10000 mg/kg bw
Method: Year: 1977
GLP: no
Test substance: no data

Method: DESIGN:
9 birds/group; gavage; total dose 60000 mg/kg; twice daily treatment (5000 mg/kg each time) on days 1-3 and 21-23
vehicle: corn oil

Dosing regime:
1-3 oral dose, twice daily
4-21 observation of abnormal behaviour
21-23 oral dose, twice daily
24-42 observation for normal behaviour
42 sacrifice, histopathology

PARAMETERS:
observation (42 days), body weights (days: 0, 21, 42), mortality, necropsy, histopathology

Result: OBSERVATION: no effects, neurotoxic response: 0/9
(number positive/number of birds)
BODY WEIGHT: not reported
MORTALITY: not reported
NECROPSY: not reported
HISTOPATHOLOGY: no effects

Reliability: (2) valid with restrictions
non standard study, main features reported, standard endpoints missing, high dose, study aiming at neurotoxicity

03.08.2005 (75)
5.5 GENETIC TOXICITY ‘IN VITRO’

<table>
<thead>
<tr>
<th>Type</th>
<th>Ames test</th>
</tr>
</thead>
<tbody>
<tr>
<td>System of testing</td>
<td>S. typhimurium TA 98, TA 100, TA 1535, TA 1537, TA 1538</td>
</tr>
<tr>
<td>S. cerevisiae D4</td>
<td></td>
</tr>
<tr>
<td>Test concentration</td>
<td>0.001 - 1.0 mg/plate</td>
</tr>
<tr>
<td>Cycotoxic concentr.</td>
<td>1.0 mg/plate</td>
</tr>
<tr>
<td>Metabolic activation</td>
<td>with and without</td>
</tr>
<tr>
<td>Result</td>
<td>negative</td>
</tr>
<tr>
<td>Method</td>
<td></td>
</tr>
<tr>
<td>Year</td>
<td>1979</td>
</tr>
<tr>
<td>GLP</td>
<td>no data</td>
</tr>
<tr>
<td>Test substance</td>
<td>no data</td>
</tr>
<tr>
<td>Method</td>
<td>plate incorporation</td>
</tr>
<tr>
<td></td>
<td>incl. pos. and neg. controls</td>
</tr>
<tr>
<td></td>
<td>activation by rat S9-mix from aroclor induced animals</td>
</tr>
<tr>
<td>Reliability</td>
<td>(2) valid with restrictions</td>
</tr>
<tr>
<td>Flag</td>
<td>Critical study for SIDS endpoint</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Type</th>
<th>other: Gene mutation</th>
</tr>
</thead>
<tbody>
<tr>
<td>System of testing</td>
<td>S. cerevisiae D4</td>
</tr>
<tr>
<td>Test concentration</td>
<td>no data</td>
</tr>
<tr>
<td>Cycotoxic concentr.</td>
<td>no data</td>
</tr>
<tr>
<td>Metabolic activation</td>
<td>with and without</td>
</tr>
<tr>
<td>Result</td>
<td>negative</td>
</tr>
<tr>
<td>Method</td>
<td>other: no data</td>
</tr>
<tr>
<td>Year</td>
<td>1979</td>
</tr>
<tr>
<td>GLP</td>
<td>no data</td>
</tr>
<tr>
<td>Test substance</td>
<td>no data</td>
</tr>
<tr>
<td>Reliability</td>
<td>(4) not assignable</td>
</tr>
</tbody>
</table>

Data possibly from [Monsanto]
Jagannath, D.R.
Mutagenicity evaluation of Triphenyl phosphate BO-78-83 in the Ames salmonella/microsome plate test;
Report No: 20838; 21 June 1978
Litton Bionetics, Kensington, Maryland, USA
at the request of:
Monsanto Company St. Louis, Mo, USA
EPA-OTS 0519 476 DOC.I.D.:40-8042807
<table>
<thead>
<tr>
<th>Date</th>
<th>Data Source</th>
<th>Type</th>
<th>System of testing</th>
<th>Test substance</th>
<th>Cycotoxic concentr.</th>
<th>Metabolic activation</th>
<th>Result</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>03.07.2002</td>
<td>(118)</td>
<td>Bacterial gene mutation assay</td>
<td>E. coli strain Sd-4-73</td>
<td>no data</td>
<td>without</td>
<td>negative</td>
<td>negative</td>
<td>modified paper disk method (application of test substance as a microdrop or small crystal), change from streptomycin dependence to independence Strain: E. coli sd-4-73 no metabolic activation</td>
</tr>
<tr>
<td>10.07.2002</td>
<td>(119)</td>
<td>Ames test</td>
<td>S. typhimurium TA 98, TA 100, TA 1535, TA 1537, TA 1538</td>
<td>no data</td>
<td>with and without</td>
<td>negative</td>
<td>negative</td>
<td>S9 mix from aroclor 1254 treated rat livers per incubation for 20 minutes at 37 C experiments were performed in triplicate and repeated positive and negative control were included test concentrations and cytotoxicity not reported</td>
</tr>
<tr>
<td>04.07.2002</td>
<td>(120)</td>
<td>Mouse lymphoma assay</td>
<td>L5178Y</td>
<td>no data</td>
<td>with and without</td>
<td>negative</td>
<td>negative</td>
<td>Critical study for SIDS endpoint</td>
</tr>
</tbody>
</table>

Year: 1983
GLP: no data
Test substance: no data

Reliability: (4) not assignable
Result only

Type: Bacterial gene mutation assay
System of testing: E. coli strain Sd-4-73
Test concentration: no data
Cycotoxic concentr.: without
Metabolic activation: without
Result: negative
Method: other: see free text

Year: 1958
GLP: no data
Test substance: no data

Method: modified paper disk method (application of test substance as a microdrop or small crystal), change from streptomycin dependence to independence Strain: E. coli sd-4-73 no metabolic activation
Reliability: (4) not assignable
early report
non standard test system, no defined dose/concentration

Year: 1987
GLP: no data
Test substance: other TS: vendor purity: 98+ %

Method: S9 mix from aroclor 1254 treated rat livers per incubation for 20 minutes at 37 C experiments were performed in triplicate and repeated positive and negative control were included test concentrations and cytotoxicity not reported
Reliability: (2) valid with restrictions
Method described in detail
test concentrations and cytotoxicity not reported

Flag: Critical study for SIDS endpoint
Method: Scoring for mutation was based on selecting cells that had undergone forward mutation from a TK+/− to a TK−/− genotype by cloning them in soft agar with BrdU pos. (EMS), solvent, and neg. controls included.

Reliability: (2) valid with restrictions
detailed report, no purity data about test sample

Flag: Critical study for SIDS endpoint

Method: Year: 1984
GLP: no
Test substance: specially synthesized, purified by distillation purity not stated or 99%

Method: Year: 1989
GLP: no
Test substance: other TS: 99%

Method: DESIGN: 5 hours incubation without activation in the presence of 3H-thymidin
Reliability: (2) valid with restrictions
detailed description of testsystem given

Flag: Critical study for SIDS endpoint
Metabolic activation:
- **Result:** ambiguous
- **Method:**
 - **Year:** 1989
 - **GLP:**
 - **Test substance:**
 - **Method:** TEST SYSTEM: Syrian Hamster Embryonic (SHE) cells
 - **Incubation:** 5h exposure + 6,12,18,24,30 h post exposure
 - **Activation:** none
 - **EVALUATION:** microscopy at 400x; 2000 cell per concentration
 (background: 14,45 ± 4,3 micronuclei/ 2000 cells)
 - **Result:** slight (<2x) increase of micronuclei after 18 hours but not at 24 hours
 - **18 h:** (micronuclei/cells)
 - control: 18±4.9/2000
 - 5x10E-5: 28.7±4.0/2000 (smaller increases at all other concentrations)
 - **24 h:** (micronuclei/cells)
 - control: 17.5±2.1/2000
 - 0.1x10E-5: 17.0±4.5/2000 (larger decreases at all other concentrations)
- **Reliability:** (4) not assignable
 - detailed description of test system given;
 - equivocal response in a non-standard system

Type:
- Ames test
System of testing:
- TA 1535, TA 100, TA 1537, TA 1538, TA 98
Test concentration:
- 0,1 ml/plate at 100%, 10%, 1%, 0.1% 0.01%, 0.001%
Cytotoxic concentration:
- Metabolic activation: with and without
Result:
- negative
Method:
- **Year:**
- **GLP:**
- **Test substance:** other TS
Remark:
- undiluted test substance caused precipitation
Test substance:
- mixture containing 34% TPP, 43% t-butylphenyl-diphenyl-phosphate and 23% more highly substituted triphenyl phosphates
Reliability:
- (3) invalid
 - TPP only 34 % in mixture

Type:
- Ames test
System of testing:
- TA 1535, TA 100, TA 1537, TA 1538, TA 98
Test concentration:
- 0,1 ml/plate at 10%, 1%, 0.1% 0.01%, 0.001%
Cytotoxic concentration:
- Metabolic activation: with and without
Result:
- negative
Method:
- **Year:**
- **GLP:**
- **Test substance:** other TS
Test substance:
- mixture containing 19% TPP, 46 % t-butylphenyl-diphenyl-phosphate and 35 % more highly substituted triphenyl phosphates
Reliability:
- (3) invalid
 - TPP only 19 % in mixture
5.6 GENETIC TOXICITY ‘IN VIVO’

5.7 CARCINOGENICITY

<table>
<thead>
<tr>
<th>Species</th>
<th>mouse</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sex</td>
<td>male</td>
</tr>
<tr>
<td>Strain</td>
<td>other: Strain A/St</td>
</tr>
<tr>
<td>Route of admin.</td>
<td>i.p.</td>
</tr>
<tr>
<td>Exposure period</td>
<td>up to 6 weeks</td>
</tr>
<tr>
<td>Frequency of treatm.</td>
<td>3 times/week</td>
</tr>
<tr>
<td>Post exposure period</td>
<td>18 to 24 weeks</td>
</tr>
<tr>
<td>Doses</td>
<td>20, 40, 80 mg/kg</td>
</tr>
<tr>
<td>Result</td>
<td>negative</td>
</tr>
<tr>
<td>Control group</td>
<td>yes, concurrent vehicle</td>
</tr>
<tr>
<td>Method</td>
<td>DESIGN: Mouse Lung Adenoma Test</td>
</tr>
<tr>
<td>Year</td>
<td>1977</td>
</tr>
<tr>
<td>GLP</td>
<td>no data</td>
</tr>
</tbody>
</table>

Test substance: TPP was 95-99.9%

Method: DESIGN: Mouse Lung Adenoma Test
i.p. injection
pos. + neg. control groups
MTD tested

DOSE REGIMEN:
20 mice/group
20 mg/kg: 18 injections/6 weeks
40 mg/kg: 3 injections/week
80 mg/kg: 1 injection

Max. tolerated doses were determined in a preliminary study

Result: Survival:
in the 20 mg/kg group that received 18 doses: 18/20;
in the 40 mg/kg group that received 3 doses: 3/20;
in the 80 mg/kg group that received 1 dose: 12/20.

Adenomas were only seen in the 80 mg/kg group. There was no significant increase in the adenoma incidence in this test compared to neg. control pos. control (urethane) produced 19.6 tumors per mouse at 100% survival

No other findings reported

Test substance: Critical study for SIDS endpoint

5.8.1 TOXICITY TO FERTILITY

<table>
<thead>
<tr>
<th>Type</th>
<th>One generation study</th>
</tr>
</thead>
<tbody>
<tr>
<td>Species</td>
<td>rat</td>
</tr>
<tr>
<td>Sex</td>
<td>male/female</td>
</tr>
<tr>
<td>Strain</td>
<td>Sprague-Dawley</td>
</tr>
<tr>
<td>Route of admin.</td>
<td>oral feed</td>
</tr>
<tr>
<td>Exposure period</td>
<td>91 days</td>
</tr>
<tr>
<td>Frequency of treatm.</td>
<td>daily</td>
</tr>
</tbody>
</table>
Premating exposure period

Male :
Duration of test : 3 months
No. of generation studies :
Doses : 0.25, 0.5, 0.75 or 1 % in feed (= 166, 341, 516, 690 mg/kg)
Control group : yes, concurrent no treatment
Method : other: see freetext
Year : 1987
GLP : no data
Test substance : other TS: purity: 98%

Method : DESIGN:
Four treated groups plus an untreated control, each consisting of 40 rats/sex, were administered TPP in the diet for 91 days in a subchronic study.
At the completion of this study females were mated with males from the same group. All remained on the same diet as in the subchronic study until day 20 of gestation when dams were sacrificed.

DURATION:
Substance application from 4 weeks post weaning through mating and gestation.

PARAMETERS:
observation, body weight, food consumption, necropsy
Fetuses were examined for soft tissue (1/2 of litter) and skeletal malformations.

Remark : purity: commercial grade
fertility and teratogenicity tested

Result : OBSERVATION: no findings reported
FOOD CONSUMPTION: increased in pregnant dams (not dose-dependent)
BODY WEIGHT: decreased during pregnancy (non-significant)
NECROPSY: no significant differences in number of corpora lutea, implants, implantation efficiency, viable fetuses and number of early or late deaths.
As there was no effect on the litter size (indirectly measured by the number of viable fetuses and implants) and both sexes were treated in the study, these findings indicate that fertility is not adversely affected by TPP in male and female rats.
parental NOEL = 690 mg/kg bw

Reliability : (2) valid with restrictions
Flag : Critical study for SIDS endpoint
01.10.2002

5.8.2 DEVELOPMENTAL TOXICITY/TERATOGENICITY

Species : rat
Sex : no data
Strain : Wistar
Route of admin. : oral feed
Exposure period : 6 month
Frequency of treatm. : daily
Duration of test : 6 month
Doses : 0.05-0.1-1 mg/animal (5-10-100 mg/?? diet)
Control group : other: no data
Method : other: no data
Year : 1968
GLP : no data
Test substance : no data
Method: PARAMETERS: body weight, impregnation, gestation, parturition, nursing
no details given

Result: normal growth, impregnation, gestation, parturition, and
nursing
no details given

Reliability: (3) invalid
short summary only; no methodological details
doses low
concentration of TPP in diet not clear

Species: rat
Sex: male/female
Strain: Sprague-Dawley
Route of admin.: oral feed
Exposure period: 91 days
Frequency of treatm.: daily
Duration of test: 3 months
Doses: 0.25, 0.5, 0.75 or 1 % in feed (= 166, 341, 516, 690 mg/kg)
Control group: yes, concurrent no treatment
NOAEL maternal tox.: >= 690 mg/kg bw
NOAEL teratogen.: >= 690 mg/kg bw
Method: other: see freetext
Year: 1987
GLP: no data
Test substance :

Method: DESIGN:
Four treated groups plus an untreated control, each
consisting of 40 rats/sex, were administered TPP in the diet for 91 days in
a subchronic study.
At the completion of this study females were mated with males from the
same group. All remained on the same diet as in the subchronic study until
day 20 of gestation when dams were sacrificed.
DURATION:
Substance application from 4 weeks post weaning through mating and
gestation.
PARAMETERS:
observation, body weight, food consumption, necropsy
Fetuses were examined for soft tissue (1/2 of litter) and skeletal
malformations.

Remark: purity: commercial grade
fertility and teratogenicity tested

Result: OBSERVATION: no findings reported
FOOD CONSUMPTION: increased in pregnant dams (not dose-
dependent)
BODY WEIGHT: decreased during pregnancy (non-significant)
NECROPSY: no significant differences in number of corpora lutea,
implants, implantation efficiency, viable fetuses and number of early or late
deaths.
No increase in skeletal anomalies.
Slight, non-dose-related increases in visceral variations
("All treated groups had significantly more fetuses with moderate
hydroureter than the control group. However, the high baseline incidence
exhibited in the control group and lack of a clear dose-related response
make the biological significance of this finding unclear. There were also
significantly more fetuses in the treated groups with moderately enlarged
ureters in the region adjacent to the kidney than in the controls. Again, the
incidence was not related to dose since a greater portion of fetuses were
affected in the lower dose levels than in two high levels").
No signs of teratogenicity.

<table>
<thead>
<tr>
<th>Test substance</th>
<th>purity: 98%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reliability</td>
<td>(2) valid with restrictions</td>
</tr>
<tr>
<td>Flag</td>
<td>Critical study for SIDS endpoint</td>
</tr>
</tbody>
</table>

5.8.3 TOXICITY TO REPRODUCTION, OTHER STUDIES

5.9 SPECIFIC INVESTIGATIONS

5.10 EXPOSURE EXPERIENCE

<table>
<thead>
<tr>
<th>Type of experience</th>
<th>Human - Epidemiology</th>
</tr>
</thead>
<tbody>
<tr>
<td>Method</td>
<td>TEST MATERIAL: aryl phosphate mixture containing 30 % TPP, 40 % monoisopropylphenyl diphenylphosphate, 30 % triphenyl phosphate with 2 or more isopropyl substituents</td>
</tr>
<tr>
<td>POPULATION: 38 male workers</td>
<td></td>
</tr>
<tr>
<td>CONTROL GROUP: yes</td>
<td></td>
</tr>
<tr>
<td>PARAMETERS:</td>
<td></td>
</tr>
<tr>
<td>observation, hematology, serum immunoglobulins, acetylcholinesterase activity in red blood cells, plasmacholinesterase activity and lymphocyte neurotoxic esterase (NTE), activity of monocyte nonspecific surface esterase</td>
<td></td>
</tr>
<tr>
<td>Three methods of measuring the monocyte count were used and results compared.</td>
<td></td>
</tr>
<tr>
<td>Remark</td>
<td>OBJECTIVE: Monocyte counts in man</td>
</tr>
<tr>
<td>When an automated counting instrument using an esterase stain was employed to evaluate monocyte counts, there was an apparent decrease in count in the exposed workers. They were not depressed with manual counting or with an automated counter using a different staining method.</td>
<td></td>
</tr>
<tr>
<td>Result</td>
<td>hematologic parameters, serum immunoglobulins were normal, no signs of anergy, marginal depression of acetylcholinesterase activity in red blood cells, plasmacholinesterase activity and lymphocyte neurotoxic esterase (NTE) unaffected, transiently lowered activity of nonspecific surface monocyte esterase</td>
</tr>
<tr>
<td>The apparently depressed monocyte count was significantly associated with a mild reduction in erythrocyte cell acetylcholinesterase, but no reduction was seen in plasma pseudocholinesterase or lymphocyte neurotoxic esterase. The histology of the mumps reaction was similar in both control and treated groups of people. No anergy was seen with mumps or staphylococcal phage lysate hypersensitivity skin tests.</td>
<td></td>
</tr>
<tr>
<td>Reliability</td>
<td>(4) not assignable</td>
</tr>
<tr>
<td>Flag</td>
<td>Critical study for SIDS endpoint</td>
</tr>
<tr>
<td>03.07.2002</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Type of experience</th>
<th>Human - Epidemiology</th>
</tr>
</thead>
<tbody>
<tr>
<td>Method</td>
<td>OBJECTIVE: Monocyte counts in man</td>
</tr>
<tr>
<td>TEST MATERIAL: triaryl phosphate, unspecified</td>
<td></td>
</tr>
<tr>
<td>POPULATION: 20 workers (14/6 m/f)</td>
<td></td>
</tr>
<tr>
<td>CONTROL GROUP: yes</td>
<td></td>
</tr>
<tr>
<td>PARAMETERS: blood monocyte non-specific esterase staining, monocyte</td>
<td></td>
</tr>
</tbody>
</table>
Blood samples from these workers, a group of in-plant non-exposed workers, and a group of non-exposed people living in a neighborhood 50 miles away were collected and the monocyte nonspecific esterase measured using four different methods. Monocyte counts were done using four different techniques - two automated counting machines, the Technicon D-90 and the Technicon H-6000, and two manual methods, one using an esterase stain and one a Wright stain.

Result: decreased non-specific esterase staining in monocytes. Number of monocytes normal.

The average monocyte percentage for the triaryl phosphate exposure group was just over 4.0% compared to a value of 5.43% for the plant controls; they were significantly different. The Technicon D-90 reported decreased MNSE positivity as compared to the other methods.

Reliability: (4) not assignable
test substance not identified

Flag: Critical study for SIDS endpoint

Type of experience: Human - Medical Data

Method: OBJECTIVE: health survey

POPULATION: 11+32 men engaged in manufacture of TPP

EXPOSURE: time weighted average of exposure to vapor and dust 3.5 mg/m3

Remark: The study was performed in 1960 and hygienic conditions should have been different from todays standards

Result: No dermatitis, no eye or respiratory tract irritation, no neurological diseases. In the laboratory examination, only the cholinesterase activity in red blood cells showed alteration. The overall health situation was unaffected.

Reliability: (2) valid with restrictions

retrospective health survey

Type of experience: other: Determination of exposure

Remark: OBJECTIVE: determination of exposure

Result: Triphenyl phosphate was found in human adipose tissue in all states of the USA

03.07.2002 (76)

Type of experience: other: Determination of exposure

Remark: Biomonitoring

Species: human

Method: Samples of adipose tissue from the greater omentum were obtained at autopsies of people residing in six Ontario, Canada municipalities. Each was analyzed for presence of 13 triaryl/aryl phosphates, including TPP.

No measurable TPP (detection limit 1 ng/g) was found in any fat samples.

03.07.2002 (130)

Type of experience: Human - Epidemiology

Method: This total diet study evaluated chemical contaminants in foods/diets eaten by 8 different age groups of people in the US. More than 200 foods were analyzed and an average diet was determined for 6-11 month olds, 2 year
olds, 14-16 year old males, 14-16 year old females, 25-30 year old males, 25-30 year old females, 60-65 year old males and 60-65 year old females. About 105 chemical contaminants were identified including TPP.

Result

The calculated intake of TPP in each of the 8 age groups, in mg/kg body weight/day was:
- 6-11 month olds - 0.3, 2 year old
- 4.4, 14-16 year old males - 1.2, 14-16 year old females - 1.6, 25-30 year old males - 1.6, 25-30 year old females - 0.8, 60-65 year old males - 0.5 and 60-65 year old females - 0.5.

These levels were considered safe.

Type of experience

Human - Epidemiology

Remark

general toxicity, human

Result

The mean hours of work absences did correlated inversely with exposure

The decrease of monocyte count based on esterase staining correlated with exposure but the total white cell count was increased at high exposure. Differences disappeared using two other methods of detection.

Red blood cell cholinesterase was not influenced

The rate of acute or chronic infection was not different between groups

"Masses" and "premalignant lesions" were not different

Hematology revealed a statistically significant increase in lymphocytes

No relevant neurologic findings were found

Test substance

mixture of 30% TPP, 40% mono-isopropyl-TPP, 30% di- and tri-isopropyl-TPP isomerexes

Reliability

(2) valid with restrictions

5.11 ADDITIONAL REMARKS

Type

adsorption

Method

metabolism, in vivo: rat, single i. p. injection of 300 mg of a commercial plasticizer containing 35 % TPP and several cresylphosphate isomerexes:
determination of TPP in the liver and blood after 4 h and 24 h
determination of induction of microsomal cytochrome P-450 in the liver,
pseudocholine esterase in plasma,
histopathology of caudal nerves

Result

metabolism, in vivo:

TPP in the liver after 4 h 36.6±23.3 µg/g, after 24 h 1.8±1.9 µg/g;
in blood: TPP after 4h: 0.7±0.3 µg/g, 24 h not detectable

induction of microsomal cytochrome P-450 in the liver,
decrease of pseudocholine esterase in plasma,
swollen myelin sheaths in caudal nerves 2 weeks after injection of 300 mg/kg.

Reliability

(3) invalid

Mixture containing only 35% TPP tested

Type

Biochemical or cellular interactions
OECD SIDS TRIPHENYL PHOSPHATE

5. TOXICITY

ID: 115-86-6

DATE: 20.08.2002

Method: 4 hens; 500 mg/kg bw; oral; blood was drawn 24 hr later and the activity of blood choline esterase determined.

Remark: The authors state: "Solid esters were dissolved in arachis oil or, where this was not possible, in a mixture of tri-4-methylphosphate and tri-3-methylphenylphosphate (20:80 or 40:60)." Therefore it is not clear which vehicle was used and whether there was exposure to a mixture of phosphates. Birds were observed for at least 21 days after a single dose and evidence of ataxia sought.

Result: There was a decrease of 60% in blood cholinesterase activity. Activity had returned to normal levels within 4 days of an oral dose.

Reliability: (2) valid with restrictions

Flag: Critical study for SIDS endpoint

Type: Biochemical or cellular interactions

Method: DESIGN: 5 male leghorn, oral, single dose, 1000 mg/kg bw, subcutaneous, single dose, 500 mg/kg
PARAMETERS: observation, acetyl cholinesterase activity in plasma (24 h after treatment); histopathology fourteen to thirty-six days after administration (brain, spinal cord, sciatic nerve)

Result: OBSERVATION: no paralysis,
ACETYL CHOLIN ESTERASE: severe depression (39-65%) of plasma cholinesterase 24 hrs after dosing depending on substrate used (acetylcholine, butyrylcholine, methacholine). There were no significant changes in spinal cord or brain choline esterases.

Test substance: purity >=98%

Reliability: (2) valid with restrictions

Flag: Critical study for SIDS endpoint

Type: Biochemical or cellular interactions

metabolism in vitro by human monocytes: metabolites: phenol, phenolic metabolites (catechol, hydroquinone, 2,2-biphenol, 4,4-biphenol).

Reliability: (4) not assignable

Type: Biochemical or cellular interactions

Method: in vitro: inhibition of human serum cholinesterase

Result: fractions of residues from commercial hexane distillation inhibit cholinesterase

Reliability: (3) invalid mixtures of unknown composition tested

Type: Biochemical or cellular interactions

Result: mouse, i.p.: 50-500 mg/kg bw single injection: blood cholinesterase inhibition (86.2 to 50.8 % of control)
value).
mouse, oral: 10-500 mg/kg bw single application: blood cholinesterase inhibition (87.1 to 30.4 %).
mouse, inhalation: 363 - 757 mg/m³, 2-6h: no cholinergic symptoms, slight decrease in blood cholinesterase activity after 2 h at 757 mg/m³, but not at other concentration/ duration.
mouse, dermal: unknown dose, probably 0.5 ml/animal: slight decrease in whole blood cholinesterase activity.

Test substance: "Practical grade" Eastman Organic Chemicals
Reliability: (2) valid with restrictions
Purity of TPP unknown, early study
Cholinesterase was measured as indicator of absorption of TPP. A causal relation between TPP and the inhibition of cholinesterase in mice is not proven. It is possible that impurities are responsible. The authors build their case on SAR considerations.
The results are equivocal: significant inhibition after 2 hours inhalation in mice, but not after 4 h at the same concentration (757 mg/m³)

Flag 05.09.2005: Critical study for SIDS endpoint

Type: Biochemical or cellular interactions

At a concentration of 6 x 10⁻⁵ Mol/L effects were most pronounced in human erythrocytes, human plasma and mouse whole blood with residual activities (activity expressed as per cent of controls delta pH per hour) of 21, 40 or 57 %, resp. (unspecifid duration of incubation). At a concentration of 6 x 10⁻⁷ Mol/L 85, 86 or 93 % resp.were recorded.

Test substance: "Practical grade" Eastman Organic Chemicals
Reliability: (2) valid with restrictions
early study
Cholinesterase was measured as indicator of absorption of TPP. A causal relation between TPP and the inhibition of cholinesterase is not proven. It is possible that impurities are responsible. The authors build their case on SAR considerations.

Flag 05.09.2005: Critical study for SIDS endpoint

Type: Biochemical or cellular interactions

Remark: In an in-vitro estrogen receptor (ER) competitive-binding assay the IC50 (50% inhibition of receptor binding of labeled Estradiol) for triphenyl phosphate was larger than 1 x 10⁻⁴M. For 17ß-Estradiol the IC50 was 8.99 x 10⁻¹⁰ M.

Reliability: (4) not assignable
relevance to human health unknown

Type: Biochemical or cellular interactions

Method: System of testing: human erythrocytes and plasma, chicken plasma

Method: In vitro evaluation was performed of the ability of TPP to inhibit the cholinesterase activity of human erythrocytes and human and chicken plasma. No other details were available.

Result: TPP did not inhibit the cholinesterase in this in vitro system. Only fowl plasma was investigated.

Reliability: (2) valid with restrictions
<table>
<thead>
<tr>
<th>Flag</th>
<th>Type</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>04.07.2002</td>
<td>Critical study for SIDS endpoint</td>
<td>A substrate dispersion made by dissolving TPP in dimethyl formamide and Triton X-100 was incubated with hen brain homogenate in which paraoxon-sensitive activity was completely inhibited. The inhibition of neurotoxic esterase (IC50) was measured as compared to a control, using phenyl phenylacetate or phenyl valerate as substrate.</td>
</tr>
<tr>
<td>08.07.2002</td>
<td>Critical study for SIDS endpoint</td>
<td>0.5 ml of a 70% solution of TPP in ethanol was applied to skins of mice for 24, 48 and 72 hours and blood was analyzed for blood cholinesterase level. Cholinesterase levels were 0.86 (24 hours), 0.83 (48 hours), and 0.69 (72 hours) delta-pH (parameter of enzyme activity?) per hour. Control animals (ethanol only) showed an average delta-pH per hour of 0.80. Differences were not significant at 5% level. TPP did pass through the skin in this vehicle.</td>
</tr>
<tr>
<td>05.09.2005</td>
<td></td>
<td>TPP efficiently inhibits the human monocyte carboxylesterase in vitro Ki= 8x10E-9 Cholinesterase was measured as indicator of absorption of TPP. A causal relation between TPP and the inhibition of cholinesterase is not proven. It is possible that impurities are responsible. The authors build their case on SAR considerations.</td>
</tr>
<tr>
<td>08.10.2002</td>
<td></td>
<td>TPP shows hemolytic activity in vitro EC50 = 45uM EC20 = 31uM</td>
</tr>
</tbody>
</table>

Test substance: "Practical grade" Eastman Organic Chemicals

Reliability:

(2) valid with restrictions

(4) not assignable
Type: Biochemical or cellular interactions

Remark: OPIDN (organophosphorus-induced delayed neuropathy) is correlated only to inhibition above 80%

Result: TPP inhibits the NTE in neuronal cell lines C6 and N18 but the maximum effect remains below 80% inhibition

Reliability: (4) not assignable

relevance to human health not known

05.09.2005

Type: Biochemical or cellular interactions

Method: NTE (Neuro-toxic esterase) activity was determined in rat brain and spinal cord microsomes relative to positive control (di-isopropyl-phosphofluoridate) concentration: 1 to 100 µM

Remark: The authors use the abbreviation "TPP" for triphenyl phosphite. Purity of triphenyl phosphate: 98%.

Result: Triphenyl phosphate did not inhibit NTE in vitro in the microsomal fraction of rat brain and spinal cord tissues at concentrations of 1 to 10 µM after 20 minutes of incubation. At 100 µM NTE was inhibited to about 60 %, while positive control (diisopropyl-flouro-phosphate) showed complete inhibition below 10µM.

Reliability: (2) valid with restrictions

relevance to human health not known

methods described in detail

Flag: Critical study for SIDS endpoint

05.09.2005

Type: Cytotoxicity

Method: Human cells, in vitro: proliferation of lymphocytes unaffected.

Result: inhibition of monocyte-antigen-presentation (20 - 60%)

Reliability: (4) not assignable

non standard test, relevance to human health not known

08.10.2002

Type: Cytotoxicity

Remark: Mouse fibroblasts and chick embryo cells: no cytotoxic effect,

Reliability: (3) invalid

concentration range not stated

04.07.2002

Type: Cytotoxicity

Method: System of testing: human KB and HEL-R66 cells, monkey Vero cells, dog MDCK cells.

Control: Yes

Method: TPP at several dilutions in DMSO was added to cultures of these cells in Petri dishes and incubated for 72 hours. The number of viable cells was then determined and compared to a control for each cell line. The ID50 (the dose that inhibited half of the cell growth) was calculated.

Result: Inhibition of growth by TPP was dose dependent in all cell lines. The ID50 of TPP in KB cells was 0.6 mM, HEL-R66 cells...
was 0.5 mM, in Vero cells was 0.4 mM and in MCDK cells was 0.5 mM.

Reliability
08.10.2002 : (4) not assignable

Type
: Cytotoxicity

Method
: System: chicken nerve cells
 Control: yes, concurrent

Method: Sympathetic dorsal root ganglia from 10-11 day old chick embryos were excised and placed in a depression of a microslide with the appropriate media. This was covered with a cover slip, inverted and incubated for 72 hours. Several dilutions of TPP were added, both with and without nerve growth factor (NGF), and after a 3 day incubation period nerve fibers, neurons and glial cells were observed by phase contrast microscopy and light microscopy. The concentration of the chemical at half maximum (50%) response, slope function and their respective 95% confidence intervals were calculated.

Result
: There was a dose related response in vacuolization, swelling, reduced or absent glial cells and nerve fibers, and degenerative changes therein. At concentrations of up to .01M slight to no toxic effects were observed for TPP.

EC50 = >10E-2 M

Reliability
08.10.2002 : (4) not assignable
 non standard test
 relevance to human health not known

Type
: SYSTEM: in vitro; peritoneal macrophages and spleen cells from C57Bl mice

ENDPOINTS: NK-cell activity; antibody dependent phagocytosis; TNF assay; lymphocyte blastogenesis; IgM synthesis; viability

Result
: macrophages:
 Phagocytosis: no effect
 TNF activity: no effect at 0.3 uM; dose related decrease up to 33.3 uM
 viability: 0.3 - 10 uM >= 86% ; 33.3 uM =73% ; 100uM =31%

spleen cells:
 NK-activity: dose dependent decrease
 lymphocyte blastogenesis: no effect <=10 uM
 IgM secretion: dose dependent decrease

Test substance
: TPP, 98% pure

Reliability
08.10.2002 : (4) not assignable
 non standard test

Type
: Cytotoxicity

Remark
: no clear dose/effect relation

Result
: TPP reduces the neurite outgrowth of neuronal cell lines (C6 and N18 neuronal cells)

Reliability
08.10.2002 : (4) not assignable
 non standard test, relevance to human health not known
Type: Neurotoxicity

Method: SPECIES: cat, 8 animals, (2 low dose, 2 mid dose, 1 high dose, 3 control) ROUTE/DOSE: s.c., single dose; 400, 700 and 1000 mg/kg bw
PARAMETERS: observation, necropsy, histopathology of nervous tissues (11 levels from brain to peripheral nerve, several stains)

Result: OBSERVATION:
- 400 mg/kg bw: no ataxia
- 700 mg/kg bw: weight loss, prostration, diarrhea
- 1000 mg/kg bw: weight loss, prostration,

Histopathology (700 mg/kg): generalized vascular damage, perivascular edema, loss of colon epithelium, fatty change in the liver

HISTOPATHOLOGY OF NERVIOUS TISSUES:
no axon degeneration or demyelination or any other pathological change at any dose level.

Test substance: purity 99.99 %
Reliability: (2) valid with restrictions
- high purity test substance,
- low animal number

Flag: Critical study for SIDS endpoint 08.10.2002

Type: other: Cytotoxicity / Metabolic Inhibition Test

Method: HeLa Cells: cytotoxicity in vitro,

Result: minimal inhibitory concentration 6 mg/ml

Reliability: (4) not assignable
- relevance to human health not known

05.09.2005

Type: other: Review

Remark: Review on organophosphate-induced delayed neurotoxicity of Triarylphosphates

Reliability: (4) not assignable 08.10.2002

Type: other: toxicity

Result: mouse, i.p.: 0.5 ml/20 g: no response, no death

Reliability: (4) not assignable
- no details of study design and parameters determined,
- purity of test sample not known.
- only result listed in table

05.09.2005
1. EPA (2002) EPIWIN Phosphoric acid, triphenyl ester
6. REFERENCES

(20) Bayer AG (2002) Calculation of the indirect photolysis of triphenyl phosphate in air according to AOPWIN, v1.89 (2001)

(40) CITI (1992) Biodegradation and Bioaccumulation Data of Existing Chemicals Based on the CSCL Japan, Compiled under the Supervision of Chemical Products Safety Division, Basic Industries Bureau MITI, Ed. by Japan Chemical Industry Ecology-Toxicology & Information Center (CITI)

(41) Monsanto (1975?), Analytical Chemistry, Special Study AC-75-SS-9

(45) Bayer AG (1978) Internal Study on Biodegradation of TPP by sewage sludge, original reference not available

(54) Ciba-Geigy Ltd (1981a) Internal Study, The Acute Toxicity of TPP to Rainbow Trout (Salmo gairdneri), Study No. 81 02 60

(55) Palawski D, Buckler D, Mayer FL (1983) Survival and condition of rainbow trout (Salmo gairdneri) after acute exposures to methyl parathion, triphenyl phosphate, and DEF. Bull Environ Contam Toxicol 30: 614-620

(56) Bayer AG (1979) Internal Study, Screening test with TPP on Leuciscus idus

(60) Bayer AG (1989) Internal Study, Pretest to an acute toxicity test of triphenylphosphate on Daphnia magna

(61) Ziegenfuss PS (1986) ASTM STP 921: 479-493

(64) Bayer AG (1978) Internal Study on Toxicity of TPP to E. coli, original study not available

(65) Bayer AG (1978) Internal Study on Toxicity of TPP to Pseudomonas fluorescens, original study not available

(66) Sitthichaikasem S (1978) Some toxicological effects of phosphate esters on Rainbow Trout and Bluegill. Iowa State University Dissertation

(69) FMC Corp Ind Chem Div (MacKellar DG) (1975) Data of Food and Drug Research Laboratories, Acute toxicity screening tests triphenyl-phosphate 1975 (at the request of FMC)

(70) Ciba-Geigy (1954) Acute oral toxicity to rats and mice with cover letter dated 01/09/1987, EPAOTS0513254, Doc. I.D.8687000069, 8/31/54

(82) Ciba-Geigy (1980) Triphenylphosphate - Delayed neurotoxicity in domestic hens (ED50), Study 79C009, 1, Ciba-Geigy, Pharmaceuticals Division Stanford Lodge, UK, 1 (7 Mar 1980); EPA OTS: 0513 259

(83) FMC Corp Ind Chem Div (MacKellar DG) (1976) Data of Food and Drug Research Laboratories, Acute toxicity screening tests triphenyl-phosphate 1975 (at the request of FMC)

(85) General Electric Company (Wedig JH) (1989b) Rangefinding and acute toxicity evaluations of TPPA in rats, TPS Inc. Mt Vernon, Indiana USA, OTS: 0535 042

6. REFERENCES

(89) Bayer AG (Maertins T) (1990) Disflamoll TP - Study for skin and eye irritation/corrosion in rabbits according to OECD guideline No. 404 and 405, Bayer AG data, Report No 19337, 1.8.1990

(93) Assoc. of Phosphorus Flame Retardant Technology, Osaka, Japan (Sanders A) SafePharm Laboratories, Derby, UK, SPL Project 442/068 28 Feb 2001

(94) Hjorth N (1964) Contact dermatitis from cellulose acetate film. Berufsdermatosen 12: 86-100

(95) Berkoff HS (1938) Contact dermatitis from horn-rimmed spectacles. Arch. Derm. Syph., Chicago: 746-751

(99) Andersen KE (1977) Sensitivity to flame retardant, tris(2,3-dibromopropyl) phosphate (Firemaster LVT 23P). Contact Dermatitis 3: 297-300

149

(112) Bayer AG (Kimmerle) (1957) Triphenylphosphat, 22.10.1957

(116) Monsanto (1979) Summary of mutagenicity study, neurotoxicity study, teratology study, long term feeding study and 90 day inhalation study which Monsanto has on the aryl phosphate. EPA OTS 0512766, Doc. I.D. 40-7942057 12/14/79

(117) Monsanto (Jagannath DR) (1978a) Mutagenicity evaluation of Triphenyl phosphate BO-78-83 in the Ames Salmonella/ microsome plate test. Report No: 20838; 21 June 1978; Litton Bionetics, Kensington, Maryland, USA at the request of: Monsanto Company St. Louis, Mo, USA EPA-OTS 0519 476, DOC.ID.:40-8042807

(123) Schmuck G (1989) Beziehungen zwischen neurotoxischer, mutagener und kanzerogener Wirkung organischer Phosphorverbindungen - Entwicklung und Validierung eines Zellkulturverfahrens zur Voraussage neurotoxischer Effekte. Thesis; University of Wuerzburg; Germany

(143) Sato K et al (1997) Investigation of the hemolytic effects of various organophosphorus acid triester(OPEs) and their structure-activity relationship. Toxicol. Environ. Chem. 59: 305-313

